Markovich, D. & Murer, H. The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch. 447, 594–602 (2004).
Article CAS PubMed Google Scholar
Pajor, A. M. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflugers Arch. 451, 597–605 (2006).
Article CAS PubMed Google Scholar
Bergeron, M. J., Clemencon, B., Hediger, M. A. & Markovich, D. SLC13 family of Na+-coupled di- and tri-carboxylate/sulfate transporters. Mol. Asp. Med. 34, 299–312 (2013).
Pajor, A. M. Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Arch. 466, 119–130 (2014).
Article CAS PubMed Google Scholar
Baker, S. A. & Rutter, J. Metabolites as signalling molecules. Nat. Rev. Mol. Cell Biol. 24, 355–374 (2023).
Article CAS PubMed Google Scholar
Huergo, L. F. & Dixon, R. The emergence of 2-oxoglutarate as a master regulator metabolite. Microbiol. Mol. Biol. Rev. 79, 419–435 (2015).
Article CAS PubMed PubMed Central Google Scholar
Di Conza, G., Tsai, C. H. & Ho, P. C. Fifty shades of α-ketoglutarate on cellular programming. Mol. Cell 76, 1–3 (2019).
Chin, R. M. et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510, 397–401 (2014).
Article CAS PubMed PubMed Central Google Scholar
Wang, X. et al. α-Ketoglutarate-activated NF-κB signaling promotes compensatory glucose uptake and brain tumor development. Mol. Cell 76, 148–162 (2019).
Article CAS PubMed Google Scholar
Song, J. et al. α-Ketoglutarate promotes pancreatic progenitor-like cell proliferation. Int. J. Mol. Sci. 19, 943 (2018).
Article PubMed PubMed Central Google Scholar
Weber, A. et al. Succinate accumulation is associated with a shift of mitochondrial respiratory control and HIF-1α upregulation in PTEN negative prostate cancer cells. Int. J. Mol. Sci. 19, 2129 (2018).
Article PubMed PubMed Central Google Scholar
Long, P. M. et al. N-Acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) promote growth and inhibit differentiation of glioma stem-like cells. J. Biol. Chem. 288, 26188–26200 (2013).
Article CAS PubMed PubMed Central Google Scholar
Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).
Article CAS PubMed Google Scholar
Morris, J. P. T. et al. α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature 573, 595–599 (2019).
Article CAS PubMed PubMed Central Google Scholar
Schlessinger, A., Sun, N. N., Colas, C. & Pajor, A. M. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3. J. Biol. Chem. 289, 16998–17008 (2014).
Article CAS PubMed PubMed Central Google Scholar
Zhunussova, A. et al. Tumor microenvironment promotes dicarboxylic acid carrier-mediated transport of succinate to fuel prostate cancer mitochondria. Am. J. Cancer Res 5, 1665–1679 (2015).
PubMed PubMed Central Google Scholar
Stellmer, F. et al. 3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3. J. Mol. Med. 85, 763–770 (2007).
Article CAS PubMed Google Scholar
Dewulf, J. P. et al. SLC13A3 variants cause acute reversible leukoencephalopathy and α-ketoglutarate accumulation. Ann. Neurol. 85, 385–395 (2019).
Article CAS PubMed Google Scholar
Wong, K. N. et al. Novel SLC13A3 variants and cases of acute reversible leukoencephalopathy and α-ketoglutarate accumulation and literature review. Neurol. Genet 9, e200101 (2023).
Article CAS PubMed PubMed Central Google Scholar
Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N. & Namboodiri, A. M. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007).
Article CAS PubMed PubMed Central Google Scholar
Matalon, R. & Michals-Matalon, K. Biochemistry and molecular biology of Canavan disease. Neurochem. Res. 24, 507–513 (1999).
Article CAS PubMed Google Scholar
Huang, W. et al. Transport of N-acetylaspartate by the Na+-dependent high-affinity dicarboxylate transporter NaDC3 and its relevance to the expression of the transporter in the brain. J. Pharmacol. Exp. Ther. 295, 392–403 (2000).
Morland, C. & Nordengen, K. N-Acetyl-aspartyl-glutamate in brain health and disease. Int. J. Mol. Sci. 23, 1268 (2022).
Article CAS PubMed PubMed Central Google Scholar
Maier, H., Wang-Eckhardt, L., Hartmann, D., Gieselmann, V. & Eckhardt, M. N-Acetylaspartate synthase deficiency corrects the Myelin phenotype in a Canavan disease mouse model but does not affect survival time. J. Neurosci. 35, 14501–14516 (2015).
Article CAS PubMed PubMed Central Google Scholar
Baslow, M. H. & Guilfoyle, D. N. Canavan disease, a rare early-onset human spongiform leukodystrophy: insights into its genesis and possible clinical interventions. Biochimie 95, 946–956 (2013).
Article CAS PubMed Google Scholar
Pleasure, D. et al. Pathophysiology and treatment of Canavan disease. Neurochem. Res. 45, 561–565 (2020).
Article CAS PubMed Google Scholar
Wei, H. et al. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov. Today 27, 2467–2483 (2022).
Article CAS PubMed Google Scholar
Wang, Y. et al. Ablating the transporter sodium-dependent dicarboxylate transporter 3 prevents leukodystrophy in Canavan disease mice. Ann. Neurol. 90, 845–850 (2021).
Article CAS PubMed PubMed Central Google Scholar
O’Donnell, T. et al. Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res. 880, 84–91 (2000).
Baslow, M. H., Kitada, K., Suckow, R. F., Hungund, B. L. & Serikawa, T. The effects of lithium chloride and other substances on levels of brain N-acetyl-l-aspartic acid in Canavan disease-like rats. Neurochem. Res. 27, 403–406 (2002).
Article CAS PubMed Google Scholar
Janson, C. G. et al. Lithium citrate for Canavan disease. Pediatr. Neurol. 33, 235–243 (2005).
留言 (0)