Substrate translocation and inhibition in human dicarboxylate transporter NaDC3

Markovich, D. & Murer, H. The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch. 447, 594–602 (2004).

Article  CAS  PubMed  Google Scholar 

Pajor, A. M. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflugers Arch. 451, 597–605 (2006).

Article  CAS  PubMed  Google Scholar 

Bergeron, M. J., Clemencon, B., Hediger, M. A. & Markovich, D. SLC13 family of Na+-coupled di- and tri-carboxylate/sulfate transporters. Mol. Asp. Med. 34, 299–312 (2013).

Article  CAS  Google Scholar 

Pajor, A. M. Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Arch. 466, 119–130 (2014).

Article  CAS  PubMed  Google Scholar 

Baker, S. A. & Rutter, J. Metabolites as signalling molecules. Nat. Rev. Mol. Cell Biol. 24, 355–374 (2023).

Article  CAS  PubMed  Google Scholar 

Huergo, L. F. & Dixon, R. The emergence of 2-oxoglutarate as a master regulator metabolite. Microbiol. Mol. Biol. Rev. 79, 419–435 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Conza, G., Tsai, C. H. & Ho, P. C. Fifty shades of α-ketoglutarate on cellular programming. Mol. Cell 76, 1–3 (2019).

Article  PubMed  Google Scholar 

Chin, R. M. et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510, 397–401 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X. et al. α-Ketoglutarate-activated NF-κB signaling promotes compensatory glucose uptake and brain tumor development. Mol. Cell 76, 148–162 (2019).

Article  CAS  PubMed  Google Scholar 

Song, J. et al. α-Ketoglutarate promotes pancreatic progenitor-like cell proliferation. Int. J. Mol. Sci. 19, 943 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Weber, A. et al. Succinate accumulation is associated with a shift of mitochondrial respiratory control and HIF-1α upregulation in PTEN negative prostate cancer cells. Int. J. Mol. Sci. 19, 2129 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Long, P. M. et al. N-Acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) promote growth and inhibit differentiation of glioma stem-like cells. J. Biol. Chem. 288, 26188–26200 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

Article  CAS  PubMed  Google Scholar 

Morris, J. P. T. et al. α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature 573, 595–599 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schlessinger, A., Sun, N. N., Colas, C. & Pajor, A. M. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3. J. Biol. Chem. 289, 16998–17008 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhunussova, A. et al. Tumor microenvironment promotes dicarboxylic acid carrier-mediated transport of succinate to fuel prostate cancer mitochondria. Am. J. Cancer Res 5, 1665–1679 (2015).

PubMed  PubMed Central  Google Scholar 

Stellmer, F. et al. 3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3. J. Mol. Med. 85, 763–770 (2007).

Article  CAS  PubMed  Google Scholar 

Dewulf, J. P. et al. SLC13A3 variants cause acute reversible leukoencephalopathy and α-ketoglutarate accumulation. Ann. Neurol. 85, 385–395 (2019).

Article  CAS  PubMed  Google Scholar 

Wong, K. N. et al. Novel SLC13A3 variants and cases of acute reversible leukoencephalopathy and α-ketoglutarate accumulation and literature review. Neurol. Genet 9, e200101 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N. & Namboodiri, A. M. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matalon, R. & Michals-Matalon, K. Biochemistry and molecular biology of Canavan disease. Neurochem. Res. 24, 507–513 (1999).

Article  CAS  PubMed  Google Scholar 

Huang, W. et al. Transport of N-acetylaspartate by the Na+-dependent high-affinity dicarboxylate transporter NaDC3 and its relevance to the expression of the transporter in the brain. J. Pharmacol. Exp. Ther. 295, 392–403 (2000).

CAS  PubMed  Google Scholar 

Morland, C. & Nordengen, K. N-Acetyl-aspartyl-glutamate in brain health and disease. Int. J. Mol. Sci. 23, 1268 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maier, H., Wang-Eckhardt, L., Hartmann, D., Gieselmann, V. & Eckhardt, M. N-Acetylaspartate synthase deficiency corrects the Myelin phenotype in a Canavan disease mouse model but does not affect survival time. J. Neurosci. 35, 14501–14516 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baslow, M. H. & Guilfoyle, D. N. Canavan disease, a rare early-onset human spongiform leukodystrophy: insights into its genesis and possible clinical interventions. Biochimie 95, 946–956 (2013).

Article  CAS  PubMed  Google Scholar 

Pleasure, D. et al. Pathophysiology and treatment of Canavan disease. Neurochem. Res. 45, 561–565 (2020).

Article  CAS  PubMed  Google Scholar 

Wei, H. et al. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov. Today 27, 2467–2483 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. Ablating the transporter sodium-dependent dicarboxylate transporter 3 prevents leukodystrophy in Canavan disease mice. Ann. Neurol. 90, 845–850 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Donnell, T. et al. Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res. 880, 84–91 (2000).

Article  PubMed  Google Scholar 

Baslow, M. H., Kitada, K., Suckow, R. F., Hungund, B. L. & Serikawa, T. The effects of lithium chloride and other substances on levels of brain N-acetyl-l-aspartic acid in Canavan disease-like rats. Neurochem. Res. 27, 403–406 (2002).

Article  CAS  PubMed  Google Scholar 

Janson, C. G. et al. Lithium citrate for Canavan disease. Pediatr. Neurol. 33, 235–243 (2005).

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif