Emerging concepts and treatments in autoinflammatory interferonopathies and monogenic systemic lupus erythematosus

Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).

Article  CAS  PubMed  Google Scholar 

Crow, Y. J. Type I interferonopathies: a novel set of inborn errors of immunity. Ann. N. Y. Acad. Sci. 1238, 91–98 (2011).

Article  CAS  PubMed  Google Scholar 

Crow, Y. J. et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet 38, 917–920 (2006).

Article  CAS  PubMed  Google Scholar 

Crow, Y. J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

Article  CAS  PubMed  Google Scholar 

Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124, 5516–5520 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Deng, Z. et al. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. J. Exp. Med. 217, e20201045 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Steiner, A. et al. Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nat. Commun. 13, 2321 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lepelley, A. et al. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J. Exp. Med. 2020;217:e20200600.

Agarwal, A. K. et al. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am. J. Hum. Genet. 87, 866–872 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garg, A. et al. An autosomal recessive syndrome of joint contractures, muscular atrophy, microcytic anemia, and panniculitis-associated lipodystrophy. J. Clin. Endocrinol. Metab. 95, E58–E63 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Kitamura, A. et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J. Clin. Invest. 121, 4150–4160 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arima, K. et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc. Natl Acad. Sci. USA 108, 14914–14919 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meuwissen, M. E. et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213, 1163–1174 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Duncan, C.J.A. et al. Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in STAT2. Sci. Immunol. 4, eaav7501 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).

Article  CAS  PubMed  Google Scholar 

Gruber, C. et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J. Exp. Med. 217, e20192319 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becker, L. L. et al. Interferon receptor dysfunction in a child with malignant atrophic papulosis and CNS involvement. Lancet Neurol. 21, 682–686 (2022).

Article  CAS  PubMed  Google Scholar 

Trinchieri, G. Type I interferon: friend or foe? J. Exp. Med. 207, 2053–2063 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capobianchi, M. R., Uleri, E., Caglioti, C. & Dolei, A. Type I IFN family members: similarity, differences and interaction. Cytokine Growth Factor. Rev. 26, 103–111 (2015).

Article  CAS  PubMed  Google Scholar 

Bave, U. et al. FcγRIIa is expressed on natural IFN-α-producing cells (plasmacytoid dendritic cells) and is required for the IFN-α production induced by apoptotic cells combined with lupus IgG. J. Immunol. 171, 3296–3302 (2003).

Article  CAS  PubMed  Google Scholar 

Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moody, K. L., Uccellini, M. B., Avalos, A. M., Marshak-Rothstein, A. & Viglianti, G. A. Toll-like receptor-dependent immune complex activation of B cells and dendritic cells. Methods Mol. Biol. 1390, 249–272 (2016).

Article  CAS  PubMed  Google Scholar 

Yum, S., Li, M., Fang, Y. & Chen, Z. J. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc. Natl Acad. Sci. USA 118, e2100225118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson, S. et al. Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Sci. Immunol. 7, eabi6763 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grouard, G., Durand, I., Filgueira, L., Banchereau, J. & Liu, Y. J. Dendritic cells capable of stimulating T cells in germinal centres. Nature 384, 364–367 (1996).

Article  CAS  PubMed  Google Scholar 

Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stremenova Spegarova, J. et al. A de novo TLR7 gain-of-function mutation causing severe monogenic lupus in an infant. J. Clin. Invest. 134, e179193 (2024).

Article  PubMed  PubMed Central  Google Scholar 

David, C. et al. Interface gain-of-function mutations in TLR7 cause systemic and neuro-inflammatory disease. J. Clin. Immunol. 44, 60 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park, S. H. et al. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat. Immunol. 18, 1104–1116 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schoggins, J. W. Interferon-stimulated genes: what do they all do? Annu. Rev. Virol. 6, 567–584 (2019).

Article 

留言 (0)

沒有登入
gif