Electrochemical formation of bis(fluorosulfonyl)imide-derived solid-electrolyte interphase at Li-metal potential

Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

Article  CAS  Google Scholar 

Yu, Z., Cui, Y. & Bao, Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020).

Article  Google Scholar 

Wang, H. et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6, 588–616 (2022).

Article  CAS  Google Scholar 

Hobold, G. M. et al. Moving beyond 99.9% coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

Article  CAS  Google Scholar 

Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

Article  CAS  Google Scholar 

Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

Article  CAS  Google Scholar 

Wang, H. et al. Efficient lithium metal cycling over a wide range of pressures from an anion-derived solid–electrolyte interphase framework. ACS Energy Lett. 6, 816–825 (2021).

Article  CAS  Google Scholar 

Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

Article  CAS  Google Scholar 

Kim, S. C. et al. Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability. J. Am. Chem. Soc. 143, 10301–10308 (2021).

Article  CAS  PubMed  Google Scholar 

Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

Article  CAS  PubMed  Google Scholar 

Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

Article  CAS  Google Scholar 

Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

Article  CAS  Google Scholar 

Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

Article  Google Scholar 

Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).

Article  CAS  Google Scholar 

Sayavong, P. et al. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability. J. Am. Chem. Soc. 145, 12342–12350 (2023).

Article  CAS  PubMed  Google Scholar 

Xu, Y. et al. Promoting mechanistic understanding of lithium deposition and solid–electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations and future perspectives. Adv. Energy Mater. 12, 2200398 (2022).

Article  Google Scholar 

Yu, W., Yu, Z., Cui, Y. & Bao, Z. Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7, 3270–3275 (2022).

Article  CAS  Google Scholar 

Chen, Y. et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143, 18703–18713 (2021).

Article  CAS  PubMed  Google Scholar 

Boyle, D. T. et al. Transient voltammetry with ultramicroelectrodes reveals the electron transfer kinetics of lithium metal anodes. ACS Energy Lett. 5, 701–709 (2020).

Article  CAS  Google Scholar 

Aurbach, D., Daroux, M., Faguy, P. & Yeager, E. The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. Interfacial Electrochem. 297, 225–244 (1991).

Article  CAS  Google Scholar 

Gu, Y. et al. Lithiophilic faceted Cu(100) surfaces: high utilization of host surface and cavities for lithium metal anodes. Angew. Chem. Int. Ed. 58, 3092–3096 (2019).

Article  CAS  Google Scholar 

He, J. et al. Structures of solid‐electrolyte interphases and impacts on initial‐stage lithium deposition in pyrrolidinium‐based ionic liquids. ChemElectroChem 8, 62–69 (2021).

Article  CAS  Google Scholar 

Débart, A., Dupont, L., Poizot, P., Leriche, J.-B. & Tarascon, J. M. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Electrochem. Soc. 148, A1266 (2001).

Article  Google Scholar 

Huang, W. et al. Nanostructural and electrochemical evolution of the solid-electrolyte interphase on CuO nanowires revealed by cryogenic-electron microscopy and impedance spectroscopy. ACS Nano 13, 737–744 (2019).

Article  CAS  PubMed  Google Scholar 

Xu, K. Interfaces and interphases in batteries. J. Power Sources 559, 232652 (2023).

Article  CAS  Google Scholar 

Xu, K. Electrolytes, Interfaces and Interphases: Fundamentals and Applications in Batteries (Royal Society of Chemistry, 2023).

Google Scholar 

Moshkovich, M., Gofer, Y. & Aurbach, D. Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions. J. Electrochem. Soc. 148, E155 (2001).

Article  CAS  Google Scholar 

Aurbach, D. et al. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim. Acta 50, 247–254 (2004).

Article  CAS  Google Scholar 

Schiffer, Z. J., Chung, M., Steinberg, K. & Manthiram, K. Selective electrochemical reductive amination of benzaldehyde at heterogeneous metal surfaces. Chem. Catal. 3, 100500 (2023).

Article  CAS  Google Scholar 

Menkin, S. et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 125, 16719–16732 (2021).

Article  CAS  Google Scholar 

Tan, S. et al. Unravelling the convoluted and dynamic interphasial mechanisms on Li metal anodes. Nat. Nanotechnol. 18, 243–249 (2023).

Article  CAS  PubMed  Google Scholar 

Sasaki, T., Williams, R. S., Wong, J. S. & Shirley, D. A. Radiation damage studies by X-ray photoelectron spectroscopy. I. Electron irradiated LiNO3 and Li2SO4. J. Chem. Phys. 68, 2718–2724 (1978).

Article  CAS  Google Scholar 

Agostini, M., Xiong, S., Matic, A. & Hassoun, J. Polysulfide-containing glyme-based electrolytes for lithium sulfur battery. Chem. Mater. 27, 4604–4611 (2015).

Article  CAS  Google Scholar 

Wood, K. N. & Teeter, G. XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl. Energy Mater. 1, 4493–4504 (2018).

Article  CAS  Google Scholar 

Kerner, M., Plylahan, N., Scheers, J. & Johansson, P. Thermal stability and decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts. RSC Adv. 6, 23327–23334 (2016).

Article  CAS  Google Scholar 

Huang, W., Wang, H., Boyle, D. T., Li, Y. & Cui, Y. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy. ACS Energy Lett. 5, 1128–1135 (2020).

Article  CAS  Google Scholar 

Shadike, Z. et al. Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 16, 549–554 (2021).

Article  CAS  PubMed  Google Scholar 

Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

Article  CAS 

留言 (0)

沒有登入
gif