VprBP regulates osteoclast differentiation via an epigenetic mechanism involving histone H2A phosphorylation

Huang J, Chen J. VprBP targets Merlin to the Roc1-Cul4A-DDB1 E3 ligase complex for degradation. Oncogene. 2008;27:4056–64.

Article  PubMed  CAS  Google Scholar 

Le Rouzic E, Belaidouni N, Estrabaud E, Morel M, Rain JC, Transy C, et al. HIV1 Vpr arrests the cell cycle by recruiting DCAF1/VprBP, a receptor of the Cul4-DDB1 ubiquitin ligase. Cell Cycle. 2007;6:182–8.

Article  PubMed  Google Scholar 

McCall CM, Miliani de Marval PL, Chastain PD, 2nd, Jackson SC, He YJ, Kotake Y, et al. Human immunodeficiency virus type 1 Vpr-binding protein VprBP, a WD40 protein associated with the DDB1-CUL4 E3 ubiquitin ligase, is essential for DNA replication and embryonic development. Mol Cell Biol. 2008; 28:5621–33.

Zhang S, Feng Y, Narayan O, Zhao LJ. Cytoplasmic retention of HIV-1 regulatory protein Vpr by protein-protein interaction with a novel human cytoplasmic protein VprBP. Gene. 2001;263:131–40.

Article  PubMed  CAS  Google Scholar 

Kim K, Kim JM, Kim JS, Choi J, Lee YS, Neamati N, et al. VprBP has intrinsic kinase activity targeting histone H2A and represses gene transcription. Mol Cell. 2013;52:459–67.

Article  PubMed  CAS  Google Scholar 

Ghate NB, Kim S, Spiller E, Kim S, Shin Y, Rhie SK, et al. VprBP directs epigenetic gene silencing through histone H2A phosphorylation in colon cancer. Mol Oncol. 2021;15:2801–17.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shin Y, Kim S, Liang G, Ulmer TS, An W. VprBP/DCAF1 Triggers Melanomagenic Gene Silencing through Histone H2A Phosphorylation. Biomedicines. 2023; 11.

Ghate NB, Kim S, Shin Y, Kim J, Doche M, Valena S, et al. Phosphorylation and stabilization of EZH2 by DCAF1/VprBP trigger aberrant gene silencing in colon cancer. Nat Commun. 2023;14:2140.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ghate NB, Kim S, Mehmood R, Shin Y, Kim K, An W. VprBP/DCAF1 regulates p53 function and stability through site-specific phosphorylation. Oncogene. 2023;42:1405–16.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008;473:201–9.

Article  PubMed  CAS  Google Scholar 

Nakahama K. Cellular communications in bone homeostasis and repair. Cell Mol Life Sci. 2010;67:4001–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ash P, Loutit JF, Townsend KM. Osteoclasts derived from haematopoietic stem cells. Nature. 1980;283:669–70.

Article  PubMed  CAS  Google Scholar 

Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.

Article  PubMed  CAS  Google Scholar 

Ikeda K, Takeshita S. Factors and mechanisms involved in the coupling from bone resorption to formation: how osteoclasts talk to osteoblasts. J Bone Metab. 2014;21:163–7.

Article  PubMed  PubMed Central  Google Scholar 

Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285:25103–8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–8.

Article  PubMed  CAS  Google Scholar 

Baron R. Arming the osteoclast. Nat Med. 2004;10:458–60.

Article  PubMed  CAS  Google Scholar 

Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4:638–49.

Article  PubMed  CAS  Google Scholar 

Nakamura H, Nakashima T, Hayashi M, Izawa N, Yasui T, Aburatani H, et al. Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell-cell fusion. Biochem Biophys Res Commun. 2014;455:305–11.

Article  PubMed  CAS  Google Scholar 

Li K, Han J, Wang Z. Histone modifications centric-regulation in osteogenic differentiation. Cell Death Discov. 2021;7:91.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim K, Punj V, Kim JM, Lee S, Ulmer TS, Lu W, et al. MMP-9 facilitates selective proteolysis of the histone H3 tail at genes necessary for proficient osteoclastogenesis. Genes Dev. 2016;30:208–19.

Article  PubMed  PubMed Central  Google Scholar 

Kim K, Shin Y, Kim J, Ulmer TS, An W. H3K27me1 is essential for MMP-9-dependent H3N-terminal tail proteolysis during osteoclastogenesis. Epigenetics Chromatin. 2018;11:23.

Article  PubMed  PubMed Central  Google Scholar 

Shin Y, Ghate NB, Moon B, Park K, Lu W, An W. DNMT and HDAC inhibitors modulate MMP-9-dependent H3 N-terminal tail proteolysis and osteoclastogenesis. Epigenetics Chromatin. 2019;12:25.

Article  PubMed  PubMed Central  Google Scholar 

Shin Y, Kim S, Ghate NB, Rhie SK, An W. MMP-9 drives the melanomagenic transcription program through histone H3 tail proteolysis. Oncogene. 2022;41:560–70.

Article  PubMed  CAS  Google Scholar 

Shin Y, Kim S, Liang G, An W. MMP-9-dependent proteolysis of the histone H3 N-terminal tail: a critical epigenetic step in driving oncogenic transcription and colon tumorigenesis. Mol Oncol. 2024;18:2001–19.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

Article  PubMed  CAS  Google Scholar 

Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47:D766–73.

Article  PubMed  CAS  Google Scholar 

Zhao X, Valen E, Parker BJ, Sandelin A. Systematic clustering of transcription start site landscapes. PLoS ONE. 2011;6: e23409.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Du SJ, Frenkel V, Kindschi G, Zohar Y. Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev Biol. 2001;238:239–46.

Article  PubMed  CAS  Google Scholar 

Bergen DJM, Kague E, Hammond CL. Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new osteo-active compounds. Front Endocrinol (Lausanne). 2019;10:6.

Article  PubMed  Google Scholar 

Dietrich K, Fiedler IA, Kurzyukova A, Lopez-Delgado AC, McGowan LM, Geurtzen K, et al. Skeletal biology and disease modeling in zebrafish. J Bone Miner Res. 2021;36:436–58.

Article  PubMed  CAS  Google Scholar 

Chen JR, Lai YH, Tsai JJ, Hsiao CD. Live Fluorescent Staining Platform for Drug-Screening and Mechanism-Analysis in Zebrafish for Bone Mineralization. Molecules. 2017; 22.

Kim J, Shin Y, Lee S, Kim M, Punj V, Lu JF, et al. Regulation of Breast Cancer-Induced Osteoclastogenesis by MacroH2A1.2 Involving EZH2-Mediated H3K27me3. Cell Rep. 2018; 24:224–37.

Kim JM, Shin Y, Lee S, Kim MY, Punj V, Shin HI, et al. MacroH2A1.2 inhibits prostate cancer-induced osteoclastogenesis through cooperation with HP1alpha and H1.2. Oncogene. 2018; 37:5749–65.

Adamik J, Pulugulla SH, Zhang P, Sun Q, Lontos K, Macar DA, et al. EZH2 Supports osteoclast differentiation and bone resorption via epigenetic and cytoplasmic targets. J Bone Miner Res. 2020;35:181–95.

Article  PubMed 

留言 (0)

沒有登入
gif