The role of the mucosal barrier system in maintaining gut symbiosis to prevent intestinal inflammation

Wilde CG, Griffith JE, Marra MN, Snable JL, Scott RW (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264:11200–11203

Article  CAS  PubMed  Google Scholar 

Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI (1985) Primary structures of three human neutrophil defensins. J Clin Invest 76:1436–1439. https://doi.org/10.1172/JCI112121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. https://doi.org/10.1038/nrmicro1098

Article  CAS  PubMed  Google Scholar 

Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117

Article  CAS  PubMed  Google Scholar 

Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557. https://doi.org/10.1038/ni1206

Article  CAS  PubMed  Google Scholar 

Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF (2005) Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174:4901–4907

Article  CAS  PubMed  Google Scholar 

Liang W, Enee E, Andre-Vallee C, Falcone M, Sun J, Diana J (2022) Intestinal Cathelicidin Antimicrobial Peptide Shapes a Protective Neonatal Gut Microbiota Against Pancreatic Autoimmunity. Gastroenterology 162(1288–1302):e1216. https://doi.org/10.1053/j.gastro.2021.12.272

Article  CAS  Google Scholar 

Memariani H, Memariani M (2023) Antibiofilm properties of cathelicidin LL-37: an in-depth review. World J Microbiol Biotechnol 39:99. https://doi.org/10.1007/s11274-023-03545-z

Article  CAS  PubMed  Google Scholar 

Suzuki K, Murakami T, Kuwahara-Arai K, Tamura H, Hiramatsu K, Nagaoka I (2011) Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells. Int Immunol 23:185–193. https://doi.org/10.1093/intimm/dxq471

Article  CAS  PubMed  Google Scholar 

Koziel J, Bryzek D, Sroka A, Maresz K, Glowczyk I, Bielecka E, Kantyka T, Pyrc K, Svoboda P, Pohl J, Potempa J (2014) Citrullination alters immunomodulatory function of LL-37 essential for prevention of endotoxin-induced sepsis. J Immunol 192:5363–5372. https://doi.org/10.4049/jimmunol.1303062

Article  CAS  PubMed  Google Scholar 

Lehotzky RE, Partch CL, Mukherjee S, Cash HL, Goldman WE, Gardner KH, Hooper LV (2010) Molecular basis for peptidoglycan recognition by a bactericidal lectin. Proc Natl Acad Sci U S A 107:7722–7727. https://doi.org/10.1073/pnas.0909449107

Article  PubMed  PubMed Central  Google Scholar 

Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313:1126–1130. https://doi.org/10.1126/science.1127119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miki T, Holst O, Hardt WD (2012) The bactericidal activity of the C-type lectin RegIIIbeta against Gram-negative bacteria involves binding to lipid A. J Biol Chem 287:34844–34855. https://doi.org/10.1074/jbc.M112.399998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D, Propheter DC, Rizo J, Grabe M, Jiang QX, Hooper LV (2014) Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505:103–107. https://doi.org/10.1038/nature12729nature12729[pii]

Article  PubMed  Google Scholar 

Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258. https://doi.org/10.1126/science.1209791

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ragland SA, Criss AK (2017) From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathog 13:e1006512. https://doi.org/10.1371/journal.ppat.1006512

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060

Article  CAS  PubMed  Google Scholar 

Rozenfeld RA, Liu X, DePlaen I, Hsueh W (2001) Role of gut flora on intestinal group II phospholipase A2 activity and intestinal injury in shock. Am J Physiol Gastrointest Liver Physiol 281:G957-963. https://doi.org/10.1152/ajpgi.2001.281.4.G957

Article  CAS  PubMed  Google Scholar 

Propheter DC, Chara AL, Harris TA, Ruhn KA, Hooper LV (2017) Resistin-like molecule beta is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. Proc Natl Acad Sci U S A 114:11027–11033. https://doi.org/10.1073/pnas.1711395114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hogan SP, Seidu L, Blanchard C, Groschwitz K, Mishra A, Karow ML, Ahrens R, Artis D, Murphy AJ, Valenzuela DM, Yancopoulos GD, Rothenberg ME (2006) Resistin-like molecule beta regulates innate colonic function: barrier integrity and inflammation susceptibility. J Allergy Clin Immunol 118:257–268. https://doi.org/10.1016/j.jaci.2006.04.039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Z, Zhang C, Sifuentes-Dominguez L, Zarek CM, Propheter DC, Kuang Z, Wang Y, Pendse M, Ruhn KA, Hassell B, Behrendt CL, Zhang B, Raj P, Harris-Tryon TA, Reese TA, Hooper LV (2021) Small proline-rich protein 2A is a gut bactericidal protein deployed during helminth infection. Science 374:eabe6723. https://doi.org/10.1126/science.abe6723

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273. https://doi.org/10.1038/ni888

Article  CAS  PubMed  Google Scholar 

Sultana MF, Suzuki M, Yamasaki F, Kubota W, Takahashi K, Abo H, Kawashima H (2022) Identification of Crucial Amino Acid Residues for Antimicrobial Activity of Angiogenin 4 and Its Modulation of Gut Microbiota in Mice. Front Microbiol 13:900948. https://doi.org/10.3389/fmicb.2022.900948

Article  PubMed  PubMed Central  Google Scholar 

Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418. https://doi.org/10.1038/nature09637

Article  CAS  PubMed  Google Scholar 

Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99:15451–15455. https://doi.org/10.1073/pnas.202604299

Article  CAS  PubMed  PubMed Central  Google Scholar 

Godl K, Johansson ME, Lidell ME, Morgelin M, Karlsson H, Olson FJ, Gum JR Jr, Kim YS, Hansson GC (2002) The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J Biol Chem 277:47248–47256. https://doi.org/10.1074/jbc.M208483200

Article  CAS  PubMed  Google Scholar 

Nilsson HE, Ambort D, Backstrom M, Thomsson E, Koeck PJB, Hansson GC, Hebert H (2014) Intestinal MUC2 mucin supramolecular topology by packing and release resting on D3 domain assembly. J Mol Biol 426:2567–2579. https://doi.org/10.1016/j.jmb.2014.04.027

留言 (0)

沒有登入
gif