Kyriakopoulou K, Piperigkou Z, Tzaferi K, Karamanos NK (2023) Trends in extracellular matrix biology. Mol Biol Rep 50:853–863. https://doi.org/10.1007/s11033-022-07931-y
Article CAS PubMed Google Scholar
Petrey AC, de la Motte CA (2014) Hyaluronan, a crucial regulator of inflammation. Front Immunol 5:101. https://doi.org/10.3389/fimmu.2014.00101
Article CAS PubMed PubMed Central Google Scholar
Spinelli FM, Vitale DL, Demarchi G et al (2015) The immunological effect of hyaluronan in tumor angiogenesis. Clin Transl Immunol 4(12):e52. https://doi.org/10.1038/cti.2015.35
Johnson LA, Jackson DG (2021) Hyaluronan and its receptors: Key mediators of immune cell entry and trafficking in the lymphatic system. Cells 10(8), 2061. https://doi.org/10.3390/cells10082061
Kobayashi T, Chanmee T, Itano N (2020) Hyaluronan: metabolism and function. Biomolecules 10(11):1525. https://doi.org/10.3390/biom10111525
Article CAS PubMed PubMed Central Google Scholar
Garantziotis S, Savani RC (2019) Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biol 78–79:1–10. https://doi.org/10.1016/j.matbio.2019.02.002
Article CAS PubMed PubMed Central Google Scholar
Toole BP (2001) Hyaluronan in morphogenesis. Semin Cell Dev Biol 12:79–87. https://doi.org/10.1006/scdb.2000.0244
Day AJ, De La Motte CA (2005) Hyaluronan cross-linking: a protective mechanism in inflammation? Trends Immunol 26:637–643. https://doi.org/10.1016/j.it.2005.09.009
Article CAS PubMed Google Scholar
Zhuo L, Kanamori A, Kannagi R et al (2006) SHAP potentiates the CD44-mediated leukocyte adhesion to the hyaluronan substratum. J Biol Chem 281:20303–20314. https://doi.org/10.1074/jbc.M506703200
Article CAS PubMed Google Scholar
Matuska B, Comhair S, Farver C et al (2016) Pathological hyaluronan matrices in cystic fibrosis airways and secretions. Am J Respir Cell Mol Biol 55:576–585. https://doi.org/10.1165/rcmb.2015-0358OC
Article CAS PubMed PubMed Central Google Scholar
Spinelli FM, Vitale DL, Sevic I, Alaniz L (2020) Hyaluronan in the tumor microenvironment. Adv Exp Med Biol 1245:67–83. https://doi.org/10.1007/978-3-030-40146-7_3
Article CAS PubMed Google Scholar
Nagy N, Kuipers HF, Marshall PL et al (2019) Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biology: J Int Soc Matrix Biology 78–79:292–313. https://doi.org/10.1016/j.matbio.2018.03.022
Bell TJ, Brand OJ, Morgan DJ et al (2019) Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol 80:14–28. https://doi.org/10.1016/j.matbio.2018.06.006
Article CAS PubMed PubMed Central Google Scholar
Fischer JW (2019) Role of hyaluronan in atherosclerosis: current knowledge and open questions. Matrix Biology: J Int Soc Matrix Biology 78–79:324–336. https://doi.org/10.1016/j.matbio.2018.03.003
Xiong Y, Mi B, Bin, Lin Z et al (2022) The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Military Med Res 9(1):65. https://doi.org/10.1186/s40779-022-00426-8
Serban MA, Skardal A (2019) Hyaluronan chemistries for three-dimensional matrix applications. Matrix Biology: J Int Soc Matrix Biology 78–79:337–345. https://doi.org/10.1016/j.matbio.2018.02.010
Zhang W, Mu H, Dong D et al (2014) Alteration in immune responses toward N-deacetylation of hyaluronic acid. Glycobiology 24:1334–1342. https://doi.org/10.1093/glycob/cwu079
Article CAS PubMed Google Scholar
Carvalho AM, Reis RL, Pashkuleva I (2023) Hyaluronan receptors as mediators and modulators of the Tumor Microenvironment. Adv Healthc Mater 12:1–18. https://doi.org/10.1002/adhm.202202118
Turley EA, Noble PW, Bourguignon LYW (2002) Signaling properties of hyaluronan receptors. J Biol Chem 277:4589–4592. https://doi.org/10.1074/jbc.R100038200
Article CAS PubMed Google Scholar
Alaniz L, Garcia M, Rizzo M et al (2010) Altered Hyaluronan Biosynthesis and Cancer Progression: an immunological perspective. Mini-Reviews Med Chem 9:1538–1546. https://doi.org/10.2174/138955709790361485
Avenoso A, Bruschetta G, D’Ascola A et al (2019) Hyaluronan fragments produced during tissue injury: a signal amplifying the inflammatory response. Arch Biochem Biophys 663:228–238. https://doi.org/10.1016/j.abb.2019.01.015
Article CAS PubMed Google Scholar
Tammi MI, Oikari S, Pasonen-Seppänen S et al (2019) Activated hyaluronan metabolism in the tumor matrix — causes and consequences. Matrix Biology: J Int Soc Matrix Biology 78–79:147–164. https://doi.org/10.1016/j.matbio.2018.04.012
Weigel PH (2020) Systemic glycosaminoglycan clearance by HARE/Stabilin-2 activates Intracellular Signaling. Cells 9:1–34. https://doi.org/10.3390/cells9112366
Pandey MS, Weigel PH (2014) Hyaluronic acid receptor for endocytosis (HARE)-mediated endocytosis of hyaluronan, heparin, dermatan sulfate, and acetylated low density lipoprotein (AcLDL), but not chondroitin sulfate types a, C, D, or E, activates NF-κB-regulated gene expression. J Biol Chem 289:1756–1767. https://doi.org/10.1074/jbc.M113.510339
Article CAS PubMed Google Scholar
Asano K, Arito M, Kurokawa MS et al (2014) Secretion of inflammatory factors from chondrocytes by layilin signaling. Biochem Biophys Res Commun 452:85–90. https://doi.org/10.1016/j.bbrc.2014.08.053
Article CAS PubMed Google Scholar
Yang Y, Chen Z, Chu X et al (2023) Targeting LAYN inhibits colorectal cancer metastasis and tumor-associated macrophage infiltration induced by hyaluronan oligosaccharides. Matrix Biol 117:15–30. https://doi.org/10.1016/j.matbio.2023.02.005
Article CAS PubMed Google Scholar
Wu M, Du Y, Liu Y et al (2014) Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways. PLoS ONE 9(3). https://doi.org/10.1371/journal.pone.0092857
Yeo Xian Ping J, Raj Neupane Y, Pastorin G (2022) Extracellular Vesicles and Their Interplay with Biological Membranes. https://doi.org/10.5772/intechopen.101297
Wu B, Shi X, Jiang M, Liu H (2023) Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 22(1):38. https://doi.org/10.1186/s12943-023-01748-4
Article PubMed PubMed Central Google Scholar
Aaltonen N, Kyykallio H, Tollis S et al (2022) MCF10CA breast Cancer cells utilize Hyaluronan-Coated EV-Rich trails for Coordinated Migration. Front Oncol 12:869417. https://doi.org/10.3389/fonc.2022.869417
Article CAS PubMed PubMed Central Google Scholar
Nakamura K, Sawada K, Kinose Y et al (2017) Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol cancer Research: MCR 15(1):78–92. https://doi.org/10.1158/1541-7786.MCR-16-0191
Article CAS PubMed Google Scholar
Babula A, Gałuszka-Bulaga A, Wȩglarczyk K et al (2023) CD44-hyaluronan axis plays a role in the interactions between colon cancer-derived extracellular vesicles and human monocytes. Oncol Lett 26(3):413. https://doi.org/10.3892/ol.2023.13999
留言 (0)