Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration

Kyriakopoulou K, Piperigkou Z, Tzaferi K, Karamanos NK (2023) Trends in extracellular matrix biology. Mol Biol Rep 50:853–863. https://doi.org/10.1007/s11033-022-07931-y

Article  CAS  PubMed  Google Scholar 

Petrey AC, de la Motte CA (2014) Hyaluronan, a crucial regulator of inflammation. Front Immunol 5:101. https://doi.org/10.3389/fimmu.2014.00101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spinelli FM, Vitale DL, Demarchi G et al (2015) The immunological effect of hyaluronan in tumor angiogenesis. Clin Transl Immunol 4(12):e52. https://doi.org/10.1038/cti.2015.35

Article  CAS  Google Scholar 

Johnson LA, Jackson DG (2021) Hyaluronan and its receptors: Key mediators of immune cell entry and trafficking in the lymphatic system. Cells 10(8), 2061. https://doi.org/10.3390/cells10082061

Kobayashi T, Chanmee T, Itano N (2020) Hyaluronan: metabolism and function. Biomolecules 10(11):1525. https://doi.org/10.3390/biom10111525

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garantziotis S, Savani RC (2019) Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biol 78–79:1–10. https://doi.org/10.1016/j.matbio.2019.02.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toole BP (2001) Hyaluronan in morphogenesis. Semin Cell Dev Biol 12:79–87. https://doi.org/10.1006/scdb.2000.0244

Day AJ, De La Motte CA (2005) Hyaluronan cross-linking: a protective mechanism in inflammation? Trends Immunol 26:637–643. https://doi.org/10.1016/j.it.2005.09.009

Article  CAS  PubMed  Google Scholar 

Zhuo L, Kanamori A, Kannagi R et al (2006) SHAP potentiates the CD44-mediated leukocyte adhesion to the hyaluronan substratum. J Biol Chem 281:20303–20314. https://doi.org/10.1074/jbc.M506703200

Article  CAS  PubMed  Google Scholar 

Matuska B, Comhair S, Farver C et al (2016) Pathological hyaluronan matrices in cystic fibrosis airways and secretions. Am J Respir Cell Mol Biol 55:576–585. https://doi.org/10.1165/rcmb.2015-0358OC

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spinelli FM, Vitale DL, Sevic I, Alaniz L (2020) Hyaluronan in the tumor microenvironment. Adv Exp Med Biol 1245:67–83. https://doi.org/10.1007/978-3-030-40146-7_3

Article  CAS  PubMed  Google Scholar 

Nagy N, Kuipers HF, Marshall PL et al (2019) Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biology: J Int Soc Matrix Biology 78–79:292–313. https://doi.org/10.1016/j.matbio.2018.03.022

Article  CAS  Google Scholar 

Bell TJ, Brand OJ, Morgan DJ et al (2019) Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol 80:14–28. https://doi.org/10.1016/j.matbio.2018.06.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischer JW (2019) Role of hyaluronan in atherosclerosis: current knowledge and open questions. Matrix Biology: J Int Soc Matrix Biology 78–79:324–336. https://doi.org/10.1016/j.matbio.2018.03.003

Article  CAS  Google Scholar 

Xiong Y, Mi B, Bin, Lin Z et al (2022) The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Military Med Res 9(1):65. https://doi.org/10.1186/s40779-022-00426-8

Article  CAS  Google Scholar 

Serban MA, Skardal A (2019) Hyaluronan chemistries for three-dimensional matrix applications. Matrix Biology: J Int Soc Matrix Biology 78–79:337–345. https://doi.org/10.1016/j.matbio.2018.02.010

Article  CAS  Google Scholar 

Zhang W, Mu H, Dong D et al (2014) Alteration in immune responses toward N-deacetylation of hyaluronic acid. Glycobiology 24:1334–1342. https://doi.org/10.1093/glycob/cwu079

Article  CAS  PubMed  Google Scholar 

Carvalho AM, Reis RL, Pashkuleva I (2023) Hyaluronan receptors as mediators and modulators of the Tumor Microenvironment. Adv Healthc Mater 12:1–18. https://doi.org/10.1002/adhm.202202118

Article  CAS  Google Scholar 

Turley EA, Noble PW, Bourguignon LYW (2002) Signaling properties of hyaluronan receptors. J Biol Chem 277:4589–4592. https://doi.org/10.1074/jbc.R100038200

Article  CAS  PubMed  Google Scholar 

Alaniz L, Garcia M, Rizzo M et al (2010) Altered Hyaluronan Biosynthesis and Cancer Progression: an immunological perspective. Mini-Reviews Med Chem 9:1538–1546. https://doi.org/10.2174/138955709790361485

Article  Google Scholar 

Avenoso A, Bruschetta G, D’Ascola A et al (2019) Hyaluronan fragments produced during tissue injury: a signal amplifying the inflammatory response. Arch Biochem Biophys 663:228–238. https://doi.org/10.1016/j.abb.2019.01.015

Article  CAS  PubMed  Google Scholar 

Tammi MI, Oikari S, Pasonen-Seppänen S et al (2019) Activated hyaluronan metabolism in the tumor matrix — causes and consequences. Matrix Biology: J Int Soc Matrix Biology 78–79:147–164. https://doi.org/10.1016/j.matbio.2018.04.012

Article  CAS  Google Scholar 

Weigel PH (2020) Systemic glycosaminoglycan clearance by HARE/Stabilin-2 activates Intracellular Signaling. Cells 9:1–34. https://doi.org/10.3390/cells9112366

Article  CAS  Google Scholar 

Pandey MS, Weigel PH (2014) Hyaluronic acid receptor for endocytosis (HARE)-mediated endocytosis of hyaluronan, heparin, dermatan sulfate, and acetylated low density lipoprotein (AcLDL), but not chondroitin sulfate types a, C, D, or E, activates NF-κB-regulated gene expression. J Biol Chem 289:1756–1767. https://doi.org/10.1074/jbc.M113.510339

Article  CAS  PubMed  Google Scholar 

Asano K, Arito M, Kurokawa MS et al (2014) Secretion of inflammatory factors from chondrocytes by layilin signaling. Biochem Biophys Res Commun 452:85–90. https://doi.org/10.1016/j.bbrc.2014.08.053

Article  CAS  PubMed  Google Scholar 

Yang Y, Chen Z, Chu X et al (2023) Targeting LAYN inhibits colorectal cancer metastasis and tumor-associated macrophage infiltration induced by hyaluronan oligosaccharides. Matrix Biol 117:15–30. https://doi.org/10.1016/j.matbio.2023.02.005

Article  CAS  PubMed  Google Scholar 

Wu M, Du Y, Liu Y et al (2014) Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways. PLoS ONE 9(3). https://doi.org/10.1371/journal.pone.0092857

Yeo Xian Ping J, Raj Neupane Y, Pastorin G (2022) Extracellular Vesicles and Their Interplay with Biological Membranes. https://doi.org/10.5772/intechopen.101297

Wu B, Shi X, Jiang M, Liu H (2023) Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 22(1):38. https://doi.org/10.1186/s12943-023-01748-4

Article  PubMed  PubMed Central  Google Scholar 

Aaltonen N, Kyykallio H, Tollis S et al (2022) MCF10CA breast Cancer cells utilize Hyaluronan-Coated EV-Rich trails for Coordinated Migration. Front Oncol 12:869417. https://doi.org/10.3389/fonc.2022.869417

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura K, Sawada K, Kinose Y et al (2017) Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol cancer Research: MCR 15(1):78–92. https://doi.org/10.1158/1541-7786.MCR-16-0191

Article  CAS  PubMed  Google Scholar 

Babula A, Gałuszka-Bulaga A, Wȩglarczyk K et al (2023) CD44-hyaluronan axis plays a role in the interactions between colon cancer-derived extracellular vesicles and human monocytes. Oncol Lett 26(3):413. https://doi.org/10.3892/ol.2023.13999

Article 

留言 (0)

沒有登入
gif