Unraveling the complexity of follicular fluid: insights into its composition, function, and clinical implications

Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82(6):1021–9.

Article  CAS  PubMed  Google Scholar 

Brinca AT, Ramalhinho AC, Sousa Â, Oliani AH, Breitenfeld L, Passarinha LA et al. Follicular fluid: a powerful Tool for the understanding and diagnosis of polycystic ovary syndrome. Biomedicines. 2022;10(6).

Zhou H, Ohno N, Terada N, Saitoh S, Fujii Y, Ohno S. Involvement of follicular basement membrane and vascular endothelium in blood follicle barrier formation of mice revealed by ‘in vivo cryotechnique’. Reproduction. 2007;134(2):307–17.

Article  CAS  PubMed  Google Scholar 

Clarke HG, Hope SA, Byers S, Rodgers RJ. Formation of ovarian follicular fluid may be due to the osmotic potential of large glycosaminoglycans and proteoglycans. Reproduction. 2006;132(1):119–31.

Article  CAS  PubMed  Google Scholar 

Song WY, Wang Y, Hou XM, Tian CC, Wu L, Ma XS, et al. Different expression and localization of aquaporin 7 and aquaporin 9 in granulosa cells, oocytes, and embryos of patients with polycystic ovary syndrome and the negatively correlated relationship with insulin regulation. Fertil Steril. 2021;115(2):463–73.

Article  CAS  PubMed  Google Scholar 

Wang X, Meng K, Wang H, Wang Y, Zhao Y, Kang J, et al. Identification of small extracellular vesicle subtypes in follicular fluid: insights into the function and miRNA profiles. J Cell Physiol. 2021;236(8):5633–45.

Article  CAS  PubMed  Google Scholar 

Rodrigues TA, Tuna KM, Alli AA, Tribulo P, Hansen PJ, Koh J, et al. Follicular fluid exosomes act on the bovine oocyte to improve oocyte competence to support development and survival to heat shock. Reprod Fertil Dev. 2019;31(5):888–97.

Article  CAS  PubMed  Google Scholar 

da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod. 2012;86(3):71.

Article  PubMed  Google Scholar 

Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22(2):182–93.

CAS  PubMed  Google Scholar 

Neyroud AS, Chiechio RM, Moulin G, Ducarre S, Heichette C, Dupont A et al. Diversity of Extracellular vesicles in human follicular fluid: morphological analysis and quantification. Int J Mol Sci. 2022;23(19).

Burris-Hiday SD, Scott EE. Steroidogenic cytochrome P450 17A1 structure and function. Mol Cell Endocrinol. 2021;528:111261.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ying W, Yunqi Z, Zimeng L, Kangning X, Deji L, Chen Q, et al. Large extracellular vesicles in bovine follicular fluid inhibit the apoptosis of granulosa cell and stimulate the production of steroid hormones. Theriogenology. 2023;195:149–58.

Article  CAS  PubMed  Google Scholar 

Nejabati HR, Roshangar L, Nouri M. Follicular fluid extracellular vesicle miRNAs and ovarian aging. Clin Chim Acta. 2023;538:29–35.

Article  CAS  PubMed  Google Scholar 

Martinez RM, Baccarelli AA, Liang L, Dioni L, Mansur A, Adir M, et al. Body mass index in relation to extracellular vesicle-linked microRNAs in human follicular fluid. Fertil Steril. 2019;112(2):387–e963.

Article  PubMed  PubMed Central  Google Scholar 

D’Acunzo P, Pérez-González R, Kim Y, Hargash T, Miller C, Alldred MJ et al. Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome. Sci Adv. 2021;7(7).

Yang J, Feng T, Li S, Zhang X, Qian Y. Human follicular fluid shows diverse metabolic profiles at different follicle developmental stages. Reprod Biol Endocrinol. 2020;18(1):74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tesic B, Samardzija Nenadov D, Tomanic T, Fa Nedeljkovic S, Milatovic S, Stanic B et al. DEHP decreases steroidogenesis through the cAMP and ERK1/2 signaling pathways in FSH-Stimulated human granulosa cells. Cells. 2023;12(3).

Pizarro BM, Cordeiro A, Reginatto MW, Campos SPC, Mancebo ACA, Areas PCF, et al. Estradiol and progesterone levels are related to Redox Status in the follicular fluid during in vitro fertilization. J Endocr Soc. 2020;4(7):bvaa064.

Article  PubMed  PubMed Central  Google Scholar 

de los Santos MJ, García-Laez V, Beltrán D, Labarta E, Zuzuarregui JL, Alamá P, et al. The follicular hormonal profile in low-responder patients undergoing unstimulated cycles: is it hypoandrogenic? Hum Reprod. 2013;28(1):224–9.

Article  PubMed  Google Scholar 

Orisaka M, Miyazaki Y, Shirafuji A, Tamamura C, Tsuyoshi H, Tsang BK, et al. The role of pituitary gonadotropins and intraovarian regulators in follicle development: a mini-review. Reprod Med Biol. 2021;20(2):169–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang L, Zhao XX. Correlation between aneuploidy pregnancy and the concentration of various hormones and vascular endothelial factor in follicular fluid as well as the number of acquired oocytes. J Perinat Med. 2019;48(1):40–5.

Article  PubMed  Google Scholar 

Yuan F, Hao X, Cui Y, Huang F, Zhang X, Sun Y, et al. SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation. Cell Death Dis. 2022;13(11):963.

Article  PubMed  PubMed Central  Google Scholar 

Pacella L, Zander-Fox DL, Armstrong DT, Lane M. Women with reduced ovarian reserve or advanced maternal age have an altered follicular environment. Fertil Steril. 2012;98(4):986–94.e1-2.

Article  PubMed  Google Scholar 

Azari-Dolatabad N, Benedetti C, Velez DA, Montoro AF, Sadeghi H, Residiwati G, et al. Oocyte developmental capacity is influenced by intrinsic ovarian factors in a bovine model for individual embryo production. Anim Reprod Sci. 2023;249:107185.

Article  CAS  PubMed  Google Scholar 

Luna M, Alkon T, Hernandez-Nieto C, Cassis D, Sandler B. P-704 Post trigger progesterone levels as a predictor of oocyte recovery rate. Hum Reprod. 2022;37(Supplement_1).

Liu T, Qin QY, Qu JX, Wang HY, Yan J. Where are the theca cells from: the mechanism of theca cells derivation and differentiation. Chin Med J (Engl). 2020;133(14):1711–8.

Article  CAS  PubMed  Google Scholar 

Nielsen ME, Rasmussen IA, Kristensen SG, Christensen ST, Møllgård K, Wreford Andersen E, et al. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA. Mol Hum Reprod. 2011;17(1):63–70.

Article  CAS  PubMed  Google Scholar 

Hu L, Liu Y, Dong P, Ye P. Protective effect of wuzibushen recipe on follicular development via regulating androgen receptor in polycystic ovary syndrome model rats. Gynecol Endocrinol. 2023;39(1):2190808.

Article  PubMed  Google Scholar 

Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009;7:40.

Article  PubMed  PubMed Central  Google Scholar 

Russo M, Forte G, Montanino Oliva M, Laganà AS, Unfer V. Melatonin and Myo-Inositol: supporting Reproduction from the oocyte to Birth. Int J Mol Sci. 2021;22(16).

Kedem-Dickman A, Maman E, Yung Y, Yerushalmi GM, Hemi R, Hanochi M, et al. Anti-Müllerian hormone is highly expressed and secreted from cumulus granulosa cells of stimulated preovulatory immature and atretic oocytes. Reprod Biomed Online. 2012;24(5):540–6.

Article  CAS  PubMed  Google Scholar 

Zhang M, Lu Y, Chen Y, Zhang Y, Xiong B. Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes. Redox Biol. 2020;28:101327.

Article  CAS  PubMed  Google Scholar 

Tamura H, Jozaki M, Tanabe M, Shirafuta Y, Mihara Y, Shinagawa M et al. Importance of melatonin in assisted Reproductive Technology and ovarian aging. Int J Mol Sci. 2020;21(3).

Tao J, Zhang L, Zhang X, Chen Y, Chen Q, Shen M et al. Effect of exogenous melatonin on the development of mice ovarian follicles and Follicular Angiogenesis. Int J Mol Sci. 2021;22(20).

Liu W, Chen Z, Li R, Zheng M, Pang X, Wen A, et al. High and low dose of luzindole or 4-phenyl-2-propionamidotetralin (4-P-PDOT) reverse bovine granulosa cell response to melatonin. PeerJ. 2023;11:e14612.

Article  PubMed  PubMed Central  Google Scholar 

Fang L, Li Y, Wang S, Yu Y, Li Y, Guo Y, et al. Melatonin induces progesterone production in human granulosa-lutein cells through upregulation of StAR expression. Aging. 2019;11(20):9013–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng JC, Fang L, Li Y, Wang S, Li Y, Yan Y, et al. Melatonin stimulates aromatase expression and estradiol production in human granulosa-lutein cells: relevance for high serum estradiol levels in patients with ovarian hyperstimulation syndrome. Exp Mol Med. 2020;52(8):1341–50.

Article 

留言 (0)

沒有登入
gif