Searching for the ‘X’ factor: investigating the genetics of primary ovarian insufficiency

Rudnicka E, Kruszewska J, Klicka K, Kowalczyk J, Grymowicz M, Skórska J et al. Premature ovarian insufficiency – aetiopathology, epidemiology, and diagnostic evaluation. Prz Menopauzalny [Internet]. 2018 [cited 2024 Jul 29];17(3):105. /pmc/articles/PMC6196779/

Persani L, Rossetti R, Cacciatore C. Genes involved in human premature ovarian failure. J Mol Endocrinol [Internet]. 2010 Nov [cited 2024 Jul 28];45(5):257–79. https://pubmed.ncbi.nlm.nih.gov/20668067/

Verrilli L, Johnstone E, Welt C, Allen-Brady K. Primary ovarian insufficiency has strong familiality: results of a multigenerational genealogical study. Fertil Steril [Internet]. 2023 Jan 1 [cited 2024 Jul 29];119(1):128–34. https://pubmed.ncbi.nlm.nih.gov/36283864/

Ledig S, Preisler-Adams S, Morlot S, Liehr T, Wieacker P. Premature ovarian failure caused by a heterozygous missense mutation in POF1B and a reciprocal translocation 46,X,t(X;3)(q21.1;q21.3). Sex Dev [Internet]. 2015 Mar 24 [cited 2024 Jul 28];9(2):86–90. https://pubmed.ncbi.nlm.nih.gov/25676666/

Yatsenko SA, Wood-Trageser M, Chu T, Jiang H, Rajkovic A. A high-resolution X chromosome copy-number variation map in fertile females and women with primary ovarian insufficiency. Genet Med [Internet]. 2019 Oct 1 [cited 2024 Jul 29];21(10):2275–84. https://pubmed.ncbi.nlm.nih.gov/30948856/

Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434:7031 [Internet]. 2005 Mar 17 [cited 2024 Jul 28];434(7031):400–4. https://www.nature.com/articles/nature03479

Tukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL, Satija R et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550:7675 [Internet]. 2017 Oct 12 [cited 2024 Jul 29];550(7675):244–8. https://www.nature.com/articles/nature24265

n den Berg IM, Laven JSE, Stevens M, Jonkers I, Galjaard RJ, Gribnau J, et al. X chromosome inactivation is initiated in human preimplantation embryos. Am J Hum Genet. 2009;84(6):771–9.

Article  PubMed  PubMed Central  Google Scholar 

Okamoto I, Patrat C, Thépot D, Peynot N, Fauque P, Daniel N et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature [Internet]. 2011 Apr 21 [cited 2024 Jul 28];472(7343):370–4. https://pubmed.ncbi.nlm.nih.gov/21471966/

Teklenburg G, Weimar CHE, Fauser BCJM, Macklon N, Geijsen N, Heijnen CJ et al. Cell Lineage Specific Distribution of H3K27 Trimethylation Accumulation in an In Vitro Model for Human Implantation. PLoS One [Internet]. 2012 Mar 7 [cited 2024 Jul 29];7(3):e32701. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032701

Sugimoto M, Abe K. X Chromosome reactivation initiates in nascent primordial germ cells in mice. PLoS Genet [Internet]. 2007 Jul [cited 2024 Jul 29];3(7):e116. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0030116

Tang WWC, Dietmann S, Irie N, Leitch HG, Floros VI, Bradshaw CR et al. A unique gene regulatory network resets the human germline epigenome for development. Cell [Internet]. 2015 Jun 5 [cited 2024 Jul 29];161(6):1453–67. https://pubmed.ncbi.nlm.nih.gov/26046444/

Severino J, Bauer M, Mattimoe T, Arecco N, Cozzuto L, Lorden P et al. Controlled X-chromosome dynamics defines meiotic potential of female mouse in vitro germ cells. EMBO J [Internet]. 2022 Jun 14 [cited 2024 Jul 29];41(12). /pmc/articles/PMC9194795/

Fukuda A, Tanino M, Matoba R, Umezawa A, Akutsu H. Imbalance between the expression dosages of X-chromosome and autosomal genes in mammalian oocytes. Scientific Reports 2015 5:1 [Internet]. 2015 Sep 15 [cited 2024 Jul 28];5(1):1–11. https://www.nature.com/articles/srep14101

Furlan G, Galupa R. Mechanisms of choice in X-chromosome inactivation. Cells. 2022;11:535 [Internet]. 2022 Feb 3 [cited 2024 Jul 28];11(3):535. https://www.mdpi.com/2073-4409/11/3/535/htm

Shvetsova E, Sofronova A, Monajemi R, Gagalova K, Draisma HHM, White SJ et al. Skewed X-inactivation is common in the general female population. Eur J Hum Genet [Internet]. 2019 Mar 1 [cited 2024 Jul 29];27(3):455–65. https://pubmed.ncbi.nlm.nih.gov/30552425/

Bretherick KL, Metzger DL, Chanoine JP, Panagiotopoulos C, Watson SK, Lam WL et al. Skewed X-chromosome inactivation is associated with primary but not secondary ovarian failure. Am J Med Genet A [Internet]. 2007 May 1 [cited 2024 Jul 28];143A(9):945–51. https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/ajmg.a.31679

Miranda-Furtado CL, Luchiari HR, Chielli Pedroso DC, Kogure GS, Caetano LC, Santana BA et al. Skewed X-chromosome inactivation and shorter telomeres associate with idiopathic premature ovarian insufficiency. Fertil Steril [Internet]. 2018 Aug 1 [cited 2024 Jul 28];110(3):476–485.e1. https://pubmed.ncbi.nlm.nih.gov/30098699/

Sato K, Uehara S, Hashiyada M, Nabeshima H, Sugawara JI, Terada Y, Genet A [Internet]. Genetic significance of skewed X-chromosome inactivation in premature ovarian failure. Am J Med. 2004 Oct 15 [cited 2024 Jul 29];130A(3):240–4. https://doi.org/10.1002/ajmg.a.30256

Santos-Rebouças CB, Boy R, Vianna EQ, Gonçalves AP, Piergiorge RM, Abdala BB et al. Skewed X-Chromosome inactivation and compensatory upregulation of escape genes precludes major clinical symptoms in a female with a large xq deletion. Front Genet [Internet]. 2020 Mar 4 [cited 2024 Jul 29];11:488687. Available from: https://www.frontiersin.org.

Sun Z, Fan J, Wang Y. X-chromosome inactivation and related diseases. Genet Res (Camb) [Internet]. 2022 [cited 2024 Jul 29];2022. /pmc/articles/PMC8977309/

Hook EB, Warburton D. Turner syndrome revisited: review of new data supports the hypothesis that all viable 45,X cases are cryptic mosaics with a rescue cell line, implying an origin by mitotic loss. Hum Genet [Internet]. 2014 [cited 2024 Jul 28];133(4):417–24. https://pubmed.ncbi.nlm.nih.gov/24477775/

Urbach A, Benvenisty N. Studying Early Lethality of 45,XO (Turner’s Syndrome) Embryos Using Human Embryonic Stem Cells. PLoS One [Internet]. 2009 Jan 12 [cited 2024 Jul 29];4(1):e4175. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004175

Steiner M, Saenger P. Turner syndrome: an update. Adv Pediatr [Internet]. 2022 Aug 1 [cited 2024 Jul 29];69(1):177–202. https://pubmed.ncbi.nlm.nih.gov/35985709/

Peek R, Schleedoorn M, Van De Smeets D, Groenman F, Braat D et al. Ovarian follicles of young patients with Turner’s syndrome contain normal oocytes but monosomic 45,X granulosa cells. Hum Reprod [Internet]. 2019 Sep 29 [cited 2024 Jul 28];34(9):1686–96. https://pubmed.ncbi.nlm.nih.gov/31398245/

van der Nadesapillai S, van de Smeets D, Braat D, Fleischer K et al. Why are some patients with 45,X Turner syndrome fertile? A young girl with classical 45,X Turner syndrome and a cryptic mosaicism in the ovary. Fertil Steril [Internet]. 2021 [cited 2024 Jul 28];115:1280–7. https://doi.org/10.1016/j.fertnstert.2020.11.006

Riis ML, Nielsen JE, Hagen CP, Meyts ER, De, Græm N, Jørgensen A et al. Accelerated loss of oogonia and impaired folliculogenesis in females with Turner syndrome start during early fetal development. Hum Reprod [Internet]. 2021 Nov 1 [cited 2024 Jul 28];36(11):2992–3002. https://pubmed.ncbi.nlm.nih.gov/34568940/

Berletch JB, Yang F, Xu J, Carrel L, Disteche CM. Genes that escape from X inactivation. Hum Genet [Internet]. 2011 Aug [cited 2024 Jul 28];130(2):237. /pmc/articles/PMC3136209/

Fiot E, Zénaty D, Boizeau P, Haignere J, Santos S, Dos, Léger J. X chromosome gene dosage as a determinant of congenital malformations and of age-related comorbidity risk in patients with Turner syndrome, from childhood to early adulthood. Eur J Endocrinol [Internet]. 2019 Jun 1 [cited 2024 Jul 28];180(6):397–406. https://pubmed.ncbi.nlm.nih.gov/30991358/

Zinn AR, Ross JL. Turner syndrome and haploinsufficiency. Curr Opin Genet Dev [Internet]. 1998 [cited 2024 Jul 29];8(3):322–7. https://pubmed.ncbi.nlm.nih.gov/9690998/

Cloutier JM, Mahadevaiah SK, ElInati E, Nussenzweig A, Tóth A, Turner JMA. Histone H2AFX links meiotic chromosome asynapsis to prophase I oocyte loss in mammals. PLoS Genet [Internet]. 2015 [cited 2024 Jul 28];11(10):e1005462. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005462

Li M, Zou C, Zhao Z. Triple X syndrome with short stature: case report and literature review. Iran J Pediatr [Internet]. 2012 [cited 2024 Jul 28];22(2):269. /pmc/articles/PMC3446055/

Holland CM. 47,XXX in an adolescent with premature ovarian failure and autoimmune disease. J Pediatr Adolesc Gynecol [Internet]. 2001 [cited 2024 Jul 28];14(2):77–80. https://pubmed.ncbi.nlm.nih.gov/11479104/

Fortuño C, Labarta E. Genetics of primary ovarian insufficiency: a review. J Assist Reprod Genet [Internet]. 2014 Dec 2 [cited 2024 Jul 28];31(12):1573–85. https://pubmed.ncbi.nlm.nih.gov/25227694/

Tabolacci E, Nobile V, Pucci C, Chiurazzi P. Mechanisms of the FMR1 repeat instability: how does the CGG sequence expand? Int J Mol Sci [Internet]. 2022 May 1 [cited 2024 Jul 29];23(10). /pmc/articles/PMC9141726/

Richter JD, Zhao X. The molecular biology of FMRP: new insights into fragile X syndrome. Nat Rev Neurosci [Internet]. 2021 Apr 1 [cited 2024 Jul 29];22(4):209. /pmc/articles/PMC8094212/

Tassone F, Hagerman RJ, Taylor AK, Gane LW, Godfrey TE, Hagerman PJ. Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am J Hum Genet [Internet]. 2000 [cited 2024 Jul 29];66(1):6–15. https://pubmed.ncbi.nlm.nih.gov/10631132/

Hagerman RJ, Protic D, Rajaratnam A, Salcedo-Arellano MJ, Aydin EY, Schneider A. Fragile X-associated neuropsychiatric disorders (FXAND). Front Psychiatry [Internet]. 2018 Nov 13 [cited 2024 Jul 28];9. https://pubmed.ncbi.nlm.nih.gov/30483160/

Rehnitz J, Youness B, Nguyen XP, DIetrich JE, Roesner S, Messmer B et al. FMR1 expression in human granulosa cells and variable ovarian response: control by epigenetic mechanisms. Mol Hum Reprod [Internet]. 2021 Feb 1 [cited 2024 Jul 29];27(2). https://pubmed.ncbi.nlm.nih.gov/33493269/

Gleicher N, Weghofer A, Barad DH. Ovarian reserve determinations suggest new function of FMR1 (fragile X gene) in regulating ovarian ageing. Reprod Biomed Online [Internet]. 2010 Jun 1 [cited 2024 Jul 28];20(6):768–75. http://www.rbmojournal.com/article/S1472648310001021/fulltext

Rehnitz J, Alcoba DD, Brum IS, Dietrich JE, Youness B, Hinderhofer K et al. FMR1 expression in human granulosa cells increases with exon 1 CGG repeat length depending on ovarian reserve. Reprod Biol Endocrinol [Internet]. 2018 Jul 7 [cited 2024 Jul 29];16(1). /pmc/articles/PMC6035797/

Lu C, Lin L, Tan H, Wu H, Sherman SL, Gao F et al. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum Mol Genet [Internet]. 2012 Dec 12 [cited 2024 Jul 28];21(23):5039. /pmc/articles/PMC3490511/

Boustanai I, Raanani H, Aizer A, Orvieto R, Elizur SE. Granulosa cell dysfunction is associated with diminished ovarian response in FMR1 premutation carriers. J Clin Endocrinol Metab [Internet]. 2022 Nov 1 [cited 2024 Jul 28];107(11):3000–9. https://pubmed.ncbi.nlm.nih.gov/36112470/

Friedman-Gohas M, Elizur SE, Dratviman-Storobinsky O, Aizer A, Haas J, Raanani H et al. FMRpolyG accumulates in FMR1 premutation granulosa cells. J Ovarian Res [Internet]. 2020 Feb 26 [cited 2024 Jul 28];13(1). /pmc/articles/PMC7045455/

Bachelot A, Rouxel A, Massin N, Dulon J, Courtillot C, Matuchansky C, et al. Phenotyping and genetic studies of 357 consecutive patients presenting with premature ovarian failure. Eur J Endocrinol. 2009;161(1):179–87.

Article  CAS  PubMed  Google Scholar 

Bouali N, Hmida D, Mougou S, Bouligand J, Lakhal B, Dimessi S et al. Analysis of FMR1 gene premutation and X chromosome cytogenetic abnormalities in 100 Tunisian patients presenting premature ovarian failure. Ann Endocrinol (Paris) [Internet]. 2015 Dec 1 [cited 2024 Jul 28];76(6):671–8. https://pubmed.ncbi.nlm.nih.gov/26593861/

Conway GS, Payne NN, Webb J, Murray A, Jacobs PA. Fragile X premutation screening in women with premature ovarian failure. Hum Reprod [Internet]. 1998 [cited 2024 Jul 28];13(5):1184–7. https://pubmed.ncbi.nlm.nih.gov/9647544/

Marozzi A, Manfredini E, Tibiletti M, Furlan D, Villa N, Vegetti W et al. Molecular definition of Xq common-deleted region in patients affected by premature ovarian failure. Hum Genet [Internet]. 2000 [cited 2024 Jul 28];107(4):304–11. https://pubmed.ncbi.nlm.nih.gov/11129329/

Le Poulennec T, Dubreuil S, Grynberg M, Chabbert-Buffet N, Sermondade N, Fourati S et al. Ovarian reserve in patients with FMR1 gene premutation and the role of fertility preservation. Ann Endocrinol (Paris) [Internet]. 2024 Jul 1 [cited 2024 Jul 28];85(4). https://pubmed.ncbi.nlm.nih.gov/38702011/

Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol [Internet]. 1998 [cited 2024 Jul 28];12(12):1809–17. https://pubmed.ncbi.nlm.nih.gov/9849956/

Laitinen M, Vuojolainen K, Jaatinen R, Ketola I, Aaltonen J, Lehtonen E et al. A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis. Mech Dev [Internet]. 1998 [cited 2024 Jul 28];78(1–2):135–40. https://pubmed.ncbi.nlm.nih.gov/9858711/

Otsuka F, Yao Z, Lee TH, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem [Internet]. 2000 Dec 15 [cited 2024 Jul 28];275(50):39523–8. https://pubmed.ncbi.nlm.nih.gov/10998422/

Liu Mna, Zhang K, Xu T. min. The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency. Hum Fertil (Camb) [Internet]. 2021 [cited 2024 Jul 28];24(5):325–32. https://pubmed.ncbi.nlm.nih.gov/31607184/

Galloway SM, McNatty KP, Cambridge LM, Laitinen MPE, Juengel JL, Jokiranta TS et al. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet [Internet]. 2000 [cited 2024 Jul 28];25(3):279–83. https://pubmed.ncbi.nlm.nih.gov/10888873/

Yan C, Wang P, Demayo J, Demayo FJ, Elvin JA, Carino C et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol [Internet]. 2001 [cited 2024 Jul 29];15(6):854–66. https://pubmed.ncbi.nlm.nih.gov/11376106/

Ritter LJ, Sugimura S, Gilchrist RB. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence. Endocrinology [Internet]. 2015 Jun 1 [cited 2024 Jul 29];156(6):2299–312. https://pubmed.ncbi.nlm.nih.gov/25849729/

Su YQ, Sugiura K, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ. Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGF receptor-dependent signaling. Mol Endocrinol [Internet]. 2010 Jun [cited 2024 Jul 29];24(6):1230–9. https://pubmed.ncbi.nlm.nih.gov/20382892/

Sugimura S, Ritter LJ, Rose RD, Thompson JG, Smitz J, Mottershead DG, et al. Promotion of EGF receptor signaling improves the quality of low developmental competence oocytes. Dev Biol. 2015;403(2):139–49.

Article  CAS  PubMed  Google Scholar 

Shimizu K, Nakamura T, Bayasula, Nakanishi N, Kasahara Y, Nagai T et al. Molecular mechanism of FSHR expression induced by BMP15 in human granulosa cells. J Assist Reprod Genet [Internet]. 2019 Jun 15 [cited 2024 Jul 29];36(6):1185–94. https://pubmed.ncbi.nlm.nih.gov/31079267/

Fenwick MA, Mora JM, Mansour YT, Baithun C, Franks S, Hardy K. Investigations of TGF-β signaling in preantral follicles of female mice reveal differential roles for bone morphogenetic protein 15. Endocrinology [Internet]. 2013 Sep 1 [cited 2024 Jul 28];154(9):3423–36. https://pubmed.ncbi.nlm.nih.gov/23782946/

Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet [Internet]. 2004 [cited 2024 Jul 28];75(1):106–11. https://pubmed.ncbi.nlm.nih.gov/15136966/

Robeva R, Andonova S, Glushkova M, Todorov T, Elenkova A, Savov A et al. A rare bmp15 genetic variant in a patient with premature ovarian insufficiency and two spontaneous pregnancies. Clin Exp Obstet Gynecol [Internet]. 2020 Jun 1 [cited 2024 Jul 30];47(3):409–11. https://www.imrpress.com/journal/CEOG/47/3/https://doi.org/10.31083/j.ceog.2020.03.5068/htm

Laissue P, Christin-Maitre S, Touraine P, Kuttenn F, Ritvos O, Aittomaki K et al. Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur J Endocrinol [Internet]. 2006 May [cited 2024 Jul 30];154(5):739–44. https://pubmed.ncbi.nlm.nih.gov/16645022/

Rossetti R, Pasquale E, Di, Marozzi A, Bione S, Toniolo D, Grammatico P et al. BMP15 mutations associated with primary ovarian insufficiency cause a defective production of bioactive protein. Hum Mutat [Internet]. 2009 May [cited 2024 Jul 30];30(5):804–10. https://pubmed.ncbi.nlm.nih.gov/19263482/

Tiotiu D, Alvaro Mercadal B, Imbert R, Verbist J, Demeestere I, De Leener A et al. Variants of the BMP15 gene in a cohort of patients with premature ovarian failure. Hum Reprod [Internet]. 2010 [cited 2024 Jul 30];25(6):1581–7. https://pubmed.ncbi.nlm.nih.gov/20364024/

Bouilly J, Beau I, Barraud S, Bernard V, Azibi K, Fagart J et al. Identification of multiple gene mutations accounts for a new genetic architecture of primary ovarian insufficiency. J Clin Endocrinol Metab [Internet]. 2016 Dec 1 [cited 2024 Jul 30];101(12):4541–50. https://pubmed.ncbi.nlm.nih.gov/27603904/

Dixit H, Rao LK, Padmalatha VV, Kanakavalli M, Deenadayal M, Gupta N et al. Missense mutations in the BMP15 gene are associated with ovarian failure. Hum Genet [Internet]. 2006 May [cited 2024 Jul 30];119(4):408–15. https://pubmed.ncbi.nlm.nih.gov/16508750/

Ledig S, Röpke A, Haeusler G, Hinney B, Wieacker P. BMP15 mutations in XX gonadal dysgenesis and premature ovarian failure. Am J Obstet Gynecol [Internet]. 2008 [cited 2024 Jul 30];198(1):84.e1-84.e5https://pubmed.ncbi.nlm.nih.gov/17826728/.

Ferrarini E, Russo L, Fruzzetti F, Agretti P, De Marco G, Dimida A et al. Clinical characteristics and genetic analysis in women with premature ovarian insufficiency. Maturitas [Internet]. 2013 Jan [cited 2024 Jul 30];74(1):61–7. https://pubmed.ncbi.nlm.nih.gov/23107817/

Di Pasquale E, Rossetti R, Marozzi A, Bodega B, Borgato S, Cavallo L et al. Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab [Internet]. 2006 May [cited 2024 Jul 30];91(5):1976–9. https://pubmed.ncbi.nlm.nih.gov/16464940/

Wang B, Wen Q, Ni F, Zhou S, Wang J, Cao Y et al. Analyses of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) mutation in Chinese women with premature ovarian failure. Clin Endocrinol (Oxf) [Internet]. 2010 Jan [cited 2024 Jul 30];72(1):135–6. https://pubmed.ncbi.nlm.nih.gov/19438907/

Zhang T, Ma Q, Shen Q, Jiang C, Zou F, Shen Y et al. Identification of novel biallelic variants in BMP15 in two siblings with premature ovarian insufficiency. J Assist Reprod Genet [Internet]. 2022 Sep 1 [cited 2024 Aug 5];39(9):2125–34. https://pubmed.ncbi.nlm.nih.gov/35861920/

Persani L, Rossetti R, Di pasquale E, Cacciatore C, Fabre S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update [Internet]. 2014 Nov 1 [cited 2024 Jul 28];20(6):869–83. https://pubmed.ncbi.nlm.nih.gov/24980253/

Mehdizadeh A, Soleimani M, Amjadi F, Sene AA, Sheikhha MH, Dehghani A et al. Implication of novel BMP15 and GDF9 variants in unexpected poor ovarian response. Reprod Sci [Internet]. 2024 Mar 1 [cited 2024 Jul 28];31(3):840–50. https://pubmed.ncbi.nlm.nih.gov/37848645/

Afkhami F, Shahbazi S, Farzadi L, Danaei S. Novel bone morphogenetic protein 15 (BMP15) gene variants implicated in premature ovarian insufficiency. Reproductive Biology Endocrinol. 2022;20(1):42.

Article  CAS  Google Scholar 

Bione S, Rizzolio F, Sala C, Ricotti R, Goegan M, Manzini MC et al. Mutation analysis of two candidate genes for premature ovarian failure, DACH2 and POF1B. Hum Reprod [Internet]. 2004 [cited 2024 Jul 28];19(12):2759–66. https://pubmed.ncbi.nlm.nih.gov/15459172/

Padovano V, Lucibello I, Alari V, Mina P, Della, Crespi A, Ferrari I et al. The POF1B candidate gene for premature ovarian failure regulates epithelial polarity. J Cell Sci [Internet]. 2011 Oct 1 [cited 2024 Jul 28];124(19):3356–68. https://doi.org/10.1242/jcs.088237

Riva P, Magnani I, Fuhrmann Conti AM, Gelli D, Sala C, Toniolo D et al. FISH characterization of the Xq21 breakpoint in a translocation carrier with premature ovarian failure. Clin Genet [Internet]. 1996 [cited 2024 Jul 29];50(4):267–9. https://pubmed.ncbi.nlm.nih.gov/9001815/

Lacombe A, Lee H, Zahed L, Choucair M, Muller JM, Nelson SF et al. Disruption of POF1B binding to nonmuscle actin filaments is associated with premature ovarian failure. Am J Hum Genet [Internet]. 2006 [cited 2024 Jul 28];79(1):113–9. https://pubmed.ncbi.nlm.nih.gov/16773570/

Cheng L, Zhang J, Ahmad S, Rozier L, Yu H, Deng H et al. Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment. Dev Cell [Internet]. 2011 Mar 3 [cited 2024 Jul 28];20(3):342. /pmc/articles/PMC4581877/

Yasuda S, Oceguera-Yanez F, Kato T, Okamoto M, Yonemura S, Terada Y et al. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature [Internet]. 2004 Apr 15 [cited 2024 Jul 29];428(6984):767–71. https://pubmed.ncbi.nlm.nih.gov/15085137/

Kostrzewska-Poczekaj M, Byzia E, Soloch N, Jarmuz-Szymczak M, Janiszewska J, Kowal E et al. DIAPH2 alterations increase cellular motility and may contribute to the metastatic potential of laryngeal squamous cell carcinoma. Carcinogenesis [Internet]. 2019 Oct 16 [cited 2024 Jul 28];40(10):1251–9. https://pubmed.ncbi.nlm.nih.gov/30793164/

Bione S, Sala C, Manzini C, Arrigo G, Zuffardi O, Banfi S et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am J Hum Genet. 1998;62(3).

Mandon-Pépin B, Oustry-Vaiman A, Vigier B, Piumi F, Cribiu E, Cotinot C. Expression profiles and chromosomal localization of genes controlling meiosis and follicular development in the sheep ovary. Biol Reprod [Internet]. 2003 Mar 1 [cited 2024 Jul 29];68(3):985–95. https://doi.org/10.1095/biolreprod.102.008557

Bione S, Sala C, Manzini C, Arrigo G, Zuffardi O, Banfi S et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am J Hum Genet [Internet]. 1998 [cited 2024 Jul 28];62(3):533. Available from: /pmc/articles/PMC1376955/?report = abstract.

Genesio R, Mormile A, Licenziati MR, De Brasi D, Leone G, Balzano S et al. Short stature and primary ovarian insufficiency possibly due to chromosomal position effect in a balanced X;1 translocation. Mol Cytogenet [Internet]. 2015 Jul 15 [cited 2024 Jul 28];8(1). /pmc/articles/PMC4501070/

Bestetti I, Castronovo C, Sironi A, Caslini C, Sala C, Rossetti R et al. High-resolution array-CGH analysis on 46,XX patients affected by early onset primary ovarian insufficiency discloses new genes involved in ovarian function. Hum Reprod [Internet]. 2019 Mar 1 [cited 2024 Jul 28];34(3):574. /pmc/articles/PMC6389867/

留言 (0)

沒有登入
gif