Expression of miR-29a, miR-30c, and miR-150 microRNAs in the Long-Term Period after Chronic Radiation Exposure

Liang, L.H. and He, X.H., Macro-management of microRNAs in cell cycle progression of tumor cells and its implications in anti-cancer therapy, Acta Pharmacol. Sin., 2011, vol. 32, no. 11, pp. 1311–1320. https://doi.org/10.1038/aps.2011.103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhry, M.A., Omaruddin, R.A., Kreger, B., et al., MicroRNA responses to chronic or acute exposures to low dose ionizing radiation, Mol. Biol. Rep., 2012, vol. 39, no. 7, pp. 7549–7558. https://doi.org/10.1007/s11033-012-1589-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Metheetrairut, C. and Slack, F.J., MicroRNAs in the ionizing radiation response and in radiotherapy, Curr. Opin. Genet. Dev., 2013, vol. 23, no. 1, pp. 12–19. https://doi.org/10.1016/j.gde.2013.01.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weidhaas, J.B., Babar, I., Nallur, S.M., et al., MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy, Cancer Res., 2007, vol. 67, no. 23, pp. 11111–11116. https://doi.org/10.1158/0008-5472.CAN-07-2858

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kato, M., Paranjape, T., Müller, R.U., et al., The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells, Oncogene, 2009, vol. 28, no. 25, pp. 2419–2424. https://doi.org/10.1038/onc.2009.106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ilnytskyy, Y., Koturbash, I., and Kovalchuk, O., Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner, Environ. Mol. Mutagen., 2009, vol. 50, pp. 105–113. https://doi.org/10.1002/em.20440

Port, M., Herodin, F., Valente, M., et al., MicroRNA expression for early prediction of late occurring hematologic acute radiation syndrome in baboons, PLoS One, 2016, vol. 11, no. 11. https://doi.org/10.1371/journal.pone.0165307

Chiba, M., Monzen, S., Iwaya, C., et al., Serum miR-375-3p increase in mice exposed to a high dose of ionizing radiation, Sci. Rep., 2018, vol. 8, no. 1, p. 1302. https://doi.org/10.1038/s41598-018-19763-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gandellini, P., Rancati, T., Valdagni, R., and Zaffaroni, N., MiRNAs in tumor radiation response: bystanders or participants?, Trends Mol. Med., 2014, vol. 20, no. 9, pp. 529–539. https://doi.org/10.1016/j.molmed.2014.07.004

Article  CAS  PubMed  Google Scholar 

Blinova, E.A., Kotikova, A.I., Yanishevskaya, M.A., and Akleyev, A.V., Apoptosis of lymphocytes and polymorphisms of apoptosis regulatory genes in individuals exposed to chronic radiation exposure, Med. Radiol. Radiats. Bezop., 2020, vol. 65, no. 4, pp. 36–42. https://doi.org/10.12737/1024-6177-2020-65-4-36-42

Article  Google Scholar 

Nikiforov, V.S., Blinova, E.A., Kotikova, A.I., and Akleyev, A.V., Transcriptional activity of repair, apoptosis and cell cycle genes (TP53, MDM2, ATM, BAX, BCL-2, CDKN1A, OGG1, XPC, PADI4, MAPK8, NF-KB1, STAT3, GATA3) in chronically exposed persons with different intensity of apoptosis of peripheral blood lymphocytes, Vavilovskii Zh. Genet. Sel., 2022, vol. 26, no. 1, pp. 50–58. https://doi.org/10.18699/VJGB-22-08

Article  CAS  Google Scholar 

Burgio, E., Piscitelli, P., and Migliore, L., Ionizing radiation and human health: reviewing models of exposure and mechanisms of cellular damage. An epigenetic perspective, Int. J. Environ. Res. Public Health, 2018, vol. 15, no. 9, p. 1971. https://doi.org/10.3390/ijerph15091971

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yanishevskaya, M.A., Blinova, E.A., and Akleyev, A.V., Effect of chronic radiation exposure on human microRNA expression, Russ. J. Genet., 2023, vol. 59, no. 10, pp. 1050–1057. https://doi.org/10.1134/S1022795423100150

Article  CAS  Google Scholar 

Silkin, S.S., Krestinina, L.Yu., Startsev, V.N., and Akleyev, A.V., Ural cohort of emergency-irradiated population, Med. Ekstremal’nykh Situats., 2019, vol. 21, no. 3, pp. 393–402.

Google Scholar 

Degteva, M.O., Napier, B.A., Tolstykh, E.I., et al., Enhancements in the Techa River dosimetry system: TRDS-2016D code for reconstruction of deterministic estimates of dose from environmental exposures, Health Phys., 2019, vol. 117, no. 4, pp. 378–387. https://doi.org/10.1097/HP.0000000000001067

Article  CAS  PubMed  Google Scholar 

Sanitarnyye pravila i normy SanPiN 2.6.1.2523-09: normy radiatsionnoy bezopasnosti (NRB-99/2009), paragraph 3.1 (Sanitary Rules and Regulations SanPiN 2.6.1.2523-09: Radiation Safety Standards NRB-99/2009, Paragraph 3.1), Moscow: Federal’nyi Tsentr Gigieny i Epidemiologii Rospotrebnadzora, 2009. https://docs.cntd.ru/document/902170553. Accessed October 17, 2023.

Noren Hooten, N., Fitzpatrick, M., Wood, W.H., et al., Age-related changes in microRNA levels in serum, Aging (Albany, NY), 2013, vol. 5, no. 10, pp. 725–740. https://doi.org/10.18632/aging.100603

Article  PubMed  Google Scholar 

Noren Hooten, N., Abdelmohsen, K., Gorospe, M., et al., MicroRNA expression patterns reveal differential expression of target genes with age, PLoS One, 2010, vol. 5, no. 5. https://doi.org/10.1371/journal.pone.0010724

Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real time quantitative PCR and the 2 (Delta Delta C(T)) method, Methods, 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Chaudhry, M.A., Omaruddin, R.A., Kreger, B., et al., MicroRNA responses to chronic or acute exposures to low dose ionizing radiation, Mol. Biol. Rep., 2012, vol. 39, no. 7, pp. 7549–7558. https://doi.org/10.1007/s11033-012-1589-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, I., Ajay, S.S., Jong, I.Y., et al., New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites, Genome Res., 2009, vol. 19, no. 7, pp. 1175–1183. https://doi.org/10.1101/gr.089367.108

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brummer, A. and Hausser, J., MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation, BioEssays. 2014, vol. 36, no. 6, pp. 617–626. https://doi.org/10.1002/bies.201300104

Article  CAS  PubMed  Google Scholar 

Valinezhad Orang, A., Safaralizadeh, R., and Kazemzadeh-Bavili, M., Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation, Int. J. Genomics, 2014, vol. 2014. https://doi.org/10.1155/2014/970607

Dinh, T.-KT., Fendler, W., Chałubińska-Fendler, J., et al., Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer, Rad. Oncol., 2016, vol. 11, p. 61. https://doi.org/10.1186/s13014-016-0636-4

Article  CAS  Google Scholar 

Li, X.H., Ha, C.T., Fu, D., and Xiao, M., Micro-RNA30c negatively regulates REDD1 expression in human hematopoietic and osteoblast cells after gamma-irradiation, PLoS One, 2012, vol. 7, no. 11. https://doi.org/10.1371/journal.pone.0048700

Acharya, S.S., Fendler, W., Watson, J., et al., Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury, Sci. Transl. Med., 2015, vol. 7, no. 287, p. 287ra69. https://doi.org/10.1126/scitranslmed.aaa6593

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X.H., Ha, C.T., and Fu, D., Delta-tocotrienol suppresses radiation-induced microRNA-30 and protects mice and human CD34+ cells from radiation injury, PLoS One, 2015, vol. 10, no. 3. https://doi.org/10.1371/journal.pone.0122258

Li, X.H., Ha, C.T., and Xiao, M., MicroRNA-30 inhibits antiapoptotic factor Mcl-1 in mouse and human hematopoietic cells after radiation exposure, Apoptosis, 2016, vol. 21, no. 6, pp. 708–720. https://doi.org/10.1007/s10495-016-1238-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malachowska, B., Tomasik, B., Stawiski, K., et al., Circulating microRNAs as biomarkers of radiation exposure: a systematic review and meta-analysis, Int. J. Radiat. Oncol. Biol. Phys., 2020, vol. 106, no. 2, pp. 390–402. https://doi.org/10.1016/j.ijrobp.2019.10.028

Article  CAS  PubMed  Google Scholar 

Guo, Y., Sun, W., Gong, T., et al., MiR-30a radiosensitizes non-small cell lung cancer by targeting ATF1 that is involved in the phosphorylation of ATM, Oncol. Rep., 2017, vol. 37, no. 4, pp. 1980–1988. https://doi.org/10.3892/or.2017.5448

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan, L.Q., Zhang, T., Xu, L., et al., miR-30c-5p inhibits glioma proliferation and invasion via targeting Bcl2, Transl. Cancer Res., 2021, vol. 10, no. 1, pp. 337–348. https://doi.org/10.21037/tcr-19-2957

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostadrahimi, S., Fayaz, S., Parvizhamidi, M., et al., Downregulation of miR-1266-5P, miR-185-5P and miR-30c-2 in prostatic cancer tissue and cell lines, Oncol. Lett., 2018, vol. 15, no. 5, pp. 8157–8164. https://doi.org/10.3892/ol.2018.8336

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif