Liang, L.H. and He, X.H., Macro-management of microRNAs in cell cycle progression of tumor cells and its implications in anti-cancer therapy, Acta Pharmacol. Sin., 2011, vol. 32, no. 11, pp. 1311–1320. https://doi.org/10.1038/aps.2011.103
Article CAS PubMed PubMed Central Google Scholar
Chaudhry, M.A., Omaruddin, R.A., Kreger, B., et al., MicroRNA responses to chronic or acute exposures to low dose ionizing radiation, Mol. Biol. Rep., 2012, vol. 39, no. 7, pp. 7549–7558. https://doi.org/10.1007/s11033-012-1589-9
Article CAS PubMed PubMed Central Google Scholar
Metheetrairut, C. and Slack, F.J., MicroRNAs in the ionizing radiation response and in radiotherapy, Curr. Opin. Genet. Dev., 2013, vol. 23, no. 1, pp. 12–19. https://doi.org/10.1016/j.gde.2013.01.002
Article CAS PubMed PubMed Central Google Scholar
Weidhaas, J.B., Babar, I., Nallur, S.M., et al., MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy, Cancer Res., 2007, vol. 67, no. 23, pp. 11111–11116. https://doi.org/10.1158/0008-5472.CAN-07-2858
Article CAS PubMed PubMed Central Google Scholar
Kato, M., Paranjape, T., Müller, R.U., et al., The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells, Oncogene, 2009, vol. 28, no. 25, pp. 2419–2424. https://doi.org/10.1038/onc.2009.106
Article CAS PubMed PubMed Central Google Scholar
Ilnytskyy, Y., Koturbash, I., and Kovalchuk, O., Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner, Environ. Mol. Mutagen., 2009, vol. 50, pp. 105–113. https://doi.org/10.1002/em.20440
Port, M., Herodin, F., Valente, M., et al., MicroRNA expression for early prediction of late occurring hematologic acute radiation syndrome in baboons, PLoS One, 2016, vol. 11, no. 11. https://doi.org/10.1371/journal.pone.0165307
Chiba, M., Monzen, S., Iwaya, C., et al., Serum miR-375-3p increase in mice exposed to a high dose of ionizing radiation, Sci. Rep., 2018, vol. 8, no. 1, p. 1302. https://doi.org/10.1038/s41598-018-19763-7
Article CAS PubMed PubMed Central Google Scholar
Gandellini, P., Rancati, T., Valdagni, R., and Zaffaroni, N., MiRNAs in tumor radiation response: bystanders or participants?, Trends Mol. Med., 2014, vol. 20, no. 9, pp. 529–539. https://doi.org/10.1016/j.molmed.2014.07.004
Article CAS PubMed Google Scholar
Blinova, E.A., Kotikova, A.I., Yanishevskaya, M.A., and Akleyev, A.V., Apoptosis of lymphocytes and polymorphisms of apoptosis regulatory genes in individuals exposed to chronic radiation exposure, Med. Radiol. Radiats. Bezop., 2020, vol. 65, no. 4, pp. 36–42. https://doi.org/10.12737/1024-6177-2020-65-4-36-42
Nikiforov, V.S., Blinova, E.A., Kotikova, A.I., and Akleyev, A.V., Transcriptional activity of repair, apoptosis and cell cycle genes (TP53, MDM2, ATM, BAX, BCL-2, CDKN1A, OGG1, XPC, PADI4, MAPK8, NF-KB1, STAT3, GATA3) in chronically exposed persons with different intensity of apoptosis of peripheral blood lymphocytes, Vavilovskii Zh. Genet. Sel., 2022, vol. 26, no. 1, pp. 50–58. https://doi.org/10.18699/VJGB-22-08
Burgio, E., Piscitelli, P., and Migliore, L., Ionizing radiation and human health: reviewing models of exposure and mechanisms of cellular damage. An epigenetic perspective, Int. J. Environ. Res. Public Health, 2018, vol. 15, no. 9, p. 1971. https://doi.org/10.3390/ijerph15091971
Article CAS PubMed PubMed Central Google Scholar
Yanishevskaya, M.A., Blinova, E.A., and Akleyev, A.V., Effect of chronic radiation exposure on human microRNA expression, Russ. J. Genet., 2023, vol. 59, no. 10, pp. 1050–1057. https://doi.org/10.1134/S1022795423100150
Silkin, S.S., Krestinina, L.Yu., Startsev, V.N., and Akleyev, A.V., Ural cohort of emergency-irradiated population, Med. Ekstremal’nykh Situats., 2019, vol. 21, no. 3, pp. 393–402.
Degteva, M.O., Napier, B.A., Tolstykh, E.I., et al., Enhancements in the Techa River dosimetry system: TRDS-2016D code for reconstruction of deterministic estimates of dose from environmental exposures, Health Phys., 2019, vol. 117, no. 4, pp. 378–387. https://doi.org/10.1097/HP.0000000000001067
Article CAS PubMed Google Scholar
Sanitarnyye pravila i normy SanPiN 2.6.1.2523-09: normy radiatsionnoy bezopasnosti (NRB-99/2009), paragraph 3.1 (Sanitary Rules and Regulations SanPiN 2.6.1.2523-09: Radiation Safety Standards NRB-99/2009, Paragraph 3.1), Moscow: Federal’nyi Tsentr Gigieny i Epidemiologii Rospotrebnadzora, 2009. https://docs.cntd.ru/document/902170553. Accessed October 17, 2023.
Noren Hooten, N., Fitzpatrick, M., Wood, W.H., et al., Age-related changes in microRNA levels in serum, Aging (Albany, NY), 2013, vol. 5, no. 10, pp. 725–740. https://doi.org/10.18632/aging.100603
Noren Hooten, N., Abdelmohsen, K., Gorospe, M., et al., MicroRNA expression patterns reveal differential expression of target genes with age, PLoS One, 2010, vol. 5, no. 5. https://doi.org/10.1371/journal.pone.0010724
Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real time quantitative PCR and the 2 (Delta Delta C(T)) method, Methods, 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.1262
Article CAS PubMed Google Scholar
Chaudhry, M.A., Omaruddin, R.A., Kreger, B., et al., MicroRNA responses to chronic or acute exposures to low dose ionizing radiation, Mol. Biol. Rep., 2012, vol. 39, no. 7, pp. 7549–7558. https://doi.org/10.1007/s11033-012-1589-9
Article CAS PubMed PubMed Central Google Scholar
Lee, I., Ajay, S.S., Jong, I.Y., et al., New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites, Genome Res., 2009, vol. 19, no. 7, pp. 1175–1183. https://doi.org/10.1101/gr.089367.108
Article CAS PubMed PubMed Central Google Scholar
Brummer, A. and Hausser, J., MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation, BioEssays. 2014, vol. 36, no. 6, pp. 617–626. https://doi.org/10.1002/bies.201300104
Article CAS PubMed Google Scholar
Valinezhad Orang, A., Safaralizadeh, R., and Kazemzadeh-Bavili, M., Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation, Int. J. Genomics, 2014, vol. 2014. https://doi.org/10.1155/2014/970607
Dinh, T.-KT., Fendler, W., Chałubińska-Fendler, J., et al., Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer, Rad. Oncol., 2016, vol. 11, p. 61. https://doi.org/10.1186/s13014-016-0636-4
Li, X.H., Ha, C.T., Fu, D., and Xiao, M., Micro-RNA30c negatively regulates REDD1 expression in human hematopoietic and osteoblast cells after gamma-irradiation, PLoS One, 2012, vol. 7, no. 11. https://doi.org/10.1371/journal.pone.0048700
Acharya, S.S., Fendler, W., Watson, J., et al., Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury, Sci. Transl. Med., 2015, vol. 7, no. 287, p. 287ra69. https://doi.org/10.1126/scitranslmed.aaa6593
Article CAS PubMed PubMed Central Google Scholar
Li, X.H., Ha, C.T., and Fu, D., Delta-tocotrienol suppresses radiation-induced microRNA-30 and protects mice and human CD34+ cells from radiation injury, PLoS One, 2015, vol. 10, no. 3. https://doi.org/10.1371/journal.pone.0122258
Li, X.H., Ha, C.T., and Xiao, M., MicroRNA-30 inhibits antiapoptotic factor Mcl-1 in mouse and human hematopoietic cells after radiation exposure, Apoptosis, 2016, vol. 21, no. 6, pp. 708–720. https://doi.org/10.1007/s10495-016-1238-1
Article CAS PubMed PubMed Central Google Scholar
Malachowska, B., Tomasik, B., Stawiski, K., et al., Circulating microRNAs as biomarkers of radiation exposure: a systematic review and meta-analysis, Int. J. Radiat. Oncol. Biol. Phys., 2020, vol. 106, no. 2, pp. 390–402. https://doi.org/10.1016/j.ijrobp.2019.10.028
Article CAS PubMed Google Scholar
Guo, Y., Sun, W., Gong, T., et al., MiR-30a radiosensitizes non-small cell lung cancer by targeting ATF1 that is involved in the phosphorylation of ATM, Oncol. Rep., 2017, vol. 37, no. 4, pp. 1980–1988. https://doi.org/10.3892/or.2017.5448
Article CAS PubMed PubMed Central Google Scholar
Yuan, L.Q., Zhang, T., Xu, L., et al., miR-30c-5p inhibits glioma proliferation and invasion via targeting Bcl2, Transl. Cancer Res., 2021, vol. 10, no. 1, pp. 337–348. https://doi.org/10.21037/tcr-19-2957
Article CAS PubMed PubMed Central Google Scholar
Ostadrahimi, S., Fayaz, S., Parvizhamidi, M., et al., Downregulation of miR-1266-5P, miR-185-5P and miR-30c-2 in prostatic cancer tissue and cell lines, Oncol. Lett., 2018, vol. 15, no. 5, pp. 8157–8164. https://doi.org/10.3892/ol.2018.8336
留言 (0)