Timofeev, V.V. and Nadeev, V.N., Sobol’ (The Sable), Moscow: Zagotizdat, 1955.
Nasimovich, A.A., Sobol’, kunitsy, kharza (Sable, Martens, Yellow-Throated Marten), Moscow: Nauka, 1973.
Kashtanov, S.N., Sable of Russia: history, breeding farms and subsidiaries, breeding chronology, Krolikovod. Zverovod., 2014, no. 6, pp. 11–16.
Bakeev, N.N., Monakhov, G.I., and Sinitsyn, A.A., Sobol’ (The Sable), Vyatka, 2003, 2nd ed.
Geptner, V.G., Naumov, N.P., and Yurgenson, P.B., et al., Mlekopitayushchie Sovetskogo Soyuza (Mammals of the Soviet Union), Moscow: Vysshaya Shkola, 1967, vol. 2, part 1.
Monakhov, G.I., Geographic variation and taxonomic structure of the sable in the fauna of the Soviet Union, in Trudy Vsesoyuznogo nauchno-issledovatel’skogo instituta okhotnich’ego khozyaistva i zverovodstva (Transactions of the All-Union Scientific Research Institute of Hunting and Animal Breeding), Moscow, 1976, no. 26, pp. 54–86.
Monakhov, V.G., Geographic variation of the sable (Martes zibellina L., 1758) within the range, and phylogeography, Russ. J. Ecol., 2015, vol. 46, no. 3, pp. 279–288. https://doi.org/10.1134/S1067413615030078
Kashtanov, S.N., Svischeva, G.R., Pishchulina, S.L., et al., Geographical structure of the sable (Martes zibellina L.) gene pool on the basis of microsatellite loci analysis, Russ. J. Genet., 2015, vol. 51, no. 1, pp. 69–79. https://doi.org/10.1134/S1022795415010044
Ranyuk, M., Modorov, M., Monakhov, V., and Devyatkin, G., Genetic differentiation of autochthonous sable populations in Western and Eastern Siberia, J. Zool. Syst. Evol. Res., 2021, vol. 59, no. 8, pp. 2539–2552. https://doi.org/10.1111/jzs.12565
Kashtanov, S.N., Sulimova, G.E., Shevyrkov, V.L., and Svishcheva, G.R., Breeding of the Russian sable: stages of industrial domestication and genetic variability, Russ. J. Genet., 2016, vol. 52, no. 9, pp. 889–898. https://doi.org/10.1134/S1022795416090076
Svishcheva, G.R. and Kashtanov, S.N., Reproductive strategy of the sable (Martes zibellina Linnaeus 1758): analysis of litter size inheritance in farm-bred populations, Inf. Vestn. Vavilovskogo O-va. Genet. Sel., 2010, vol. 14, no. 3, pp. 444–451.
Robinson, R., Handbook of Genetics, vol. 4: Vertebrates of Genetic Interest, Boston, MA.: Springer-Verlag, 1975, pp. 367–398. https://doi.org/10.1007/978-1-4613-4470-4_18
Trapezov, O.V. and Trapezova, L.I., Whether or not selection can induce variability: model of the American mink (Mustela vison), Paleontol. J., 2016, vol. 50, pp. 1649–1655.
Trapezov, O.V., Black Crystal: a novel color mutant in the American mink (Mustela vison Schreber), J. Hered., 1997, vol. 88, pp. 164–166. https://doi.org/10.1093/oxfordjournals.jhered.a023080
Article CAS PubMed Google Scholar
Manakhov, A.D., Mintseva, M.Yu., and Andreeva, T.V., Genome analysis of sable fur color links lightened pigmentation phenotype to a frameshift variant in the tyrosinase-related protein 1 gene, Genes, 2021, vol. 12, no. 2, p. 157. https://doi.org/10.3390/genes12020157
Article CAS PubMed PubMed Central Google Scholar
Blaszczyk, W.M., Arning, L., Hoffmann, K.P., and Epplen, J.T., A tyrosinase missense mutation causes albinism in the Wistar rat, Pigm. Cell Res., 2005, vol. 18, no. 2, pp. 144–145. https://doi.org/10.1111/j.1600-0749.2005.00227.x
Blaszczyk, W., Distler, C., Dekomien, G.M., et al., Identification of a tyrosinase (TYR) exon 4 deletion in albino ferrets (Mustela putorius furo), Anim. Genet., 2007, vol. 38, no. 4, pp. 421–423. https://doi.org/10.1111/j.1365-2052.2007.01619.x
Article CAS PubMed Google Scholar
Yan, S., Zhao, D., Hu, M., et al., A single base insertion in the tyrosinase gene is associated with albino phenotype in silver foxes (Vulpes vulpes), Anim. Genet., 2019, vol. 50, no. 5, p. 550. https://doi.org/10.1111/age.12816
Anistoroaei, R., Fredholm, M., Christensen, K., and Leeb, T., Albinism in the American mink (Neovison vison) is associated with a tyrosinase nonsense mutation, Anim. Genet., 2008, vol. 39, no. 6, pp. 645–648. https://doi.org/10.1111/j.1365-2052.2008.01788.x
Article CAS PubMed Google Scholar
Hamosh, A., Scott, A.F., Amberger, J., et al., Online Mendelian Inheritance in Man (OMIM), Hum. Mutat., 2000, vol. 15, no. 1, pp. 57–61. https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G
Article CAS PubMed Google Scholar
Amberger, J.S., Bocchini, C.A., Scott, A.F., and Hamosh, A., Leveraging knowledge across phenotype–gene relationships, Nucleic Acids Res., 2019, vol. 47, no. D1, pp. D1038–D1043. https://doi.org/10.1093/nar/gky1151
Article CAS PubMed Google Scholar
Dessinioti, C., Stratigos, A.J., Rigopoulos, D., and Katsambas, A.D., A review of genetic disorders of hypopigmentation: lessons learned from the biology of melanocytes, Exp. Dermatol., 2009, vol. 18, no. 9, pp. 741–749.
Article CAS PubMed Google Scholar
Baxter, L.L., Watkins-Chow, D.E., Pavan, W.J., and Loftus, S.K., A curated gene list for expanding the horizons of pigmentation biology, Pigm. Cell Melanoma Res., 2019, vol. 32, no. 3, pp. 348–358.
Nicholas, F.W. and Tammen, I., Sydney Informatics Hub: Online Mendelian Inheritance in Animals (OMIA), 1995. https://doi.org/10.25910/2AMR-PV70
Körner, A. and Pawelek, J., Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin, Science, 1982, vol. 217, no. 4565, pp. 1163–1165. https://doi.org/10.1126/science.6810464
Winkler, P.A., Gornik, K.R., Ramsey, D.T., et al., A partial gene deletion of SLC45A2 causes oculocutaneous albinism in Doberman pinscher dogs, PLoS One, 2014, vol. 9, no. 3. https://doi.org/10.1371/journal.pone.0092127
Wijesena, H.R. and Schmutz, M.S., A missense mutation in SLC45A2 is associated with albinism in several small long haired dog breeds, J. Hered., 2015, vol. 106, no. 3, pp. 285–288. https://doi.org/10.1093/jhered/esv008
留言 (0)