Molecular Domestication of TLEWI DNA Transposons: Evidence and Contradictions

Bourque, G., Burns, K.H., Gehring, M., et al., Ten things you should know about transposable elements, Genome Biol., 2018, vol. 19, no. 1, p. 199. https://doi.org/10.1186/s13059-018-1577-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kojima, K.K., Structural and sequence diversity of eukaryotic transposable elements, Genes Genet. Syst., 2020, vol. 94, pp. 233–252. https://doi.org/10.1266/ggs.18-00024

Article  CAS  PubMed  Google Scholar 

Wells, J.N. and Feschotte, C., A field guide to eukaryotic transposable elements, Annu. Rev. Genet., 2020, vol. 23, no. 54, pp. 539–561. https://doi.org/10.1146/annurev-genet-040620-022145

Article  CAS  Google Scholar 

Wallau, G.L., Ortiz, M.F., and Loreto, E.L., Horizontal transposon transfer in eukarya: detection, bias, and perspectives, Genome Biol. Evol., 2012, vol. 4, no. 8, pp. 689–699. https://doi.org/10.1093/gbe/evs055

Article  CAS  PubMed  Google Scholar 

Casacuberta, E. and González, J., The impact of transposable elements in environmental adaptation, Mol. Ecol., 2013, vol. 22, no. 6, pp. 1503–1517. https://doi.org/10.1111/mec.12170

Article  CAS  PubMed  Google Scholar 

Piacentini, L., Fanti, L., Specchia, V., et al., Transposons, environmental changes, and heritable induced phenotypic variability, Chromosoma, 2014, vol. 123, no. 4, pp. 345–354. https://doi.org/10.1007/s00412-014-0464-y

Article  PubMed  PubMed Central  Google Scholar 

Auvinet, J., Graça, P., Belkadi, L., et al., Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus, BMC Genomics, 2018, vol. 19, no. 1, p. 339. https://doi.org/10.1186/s12864-018-4714-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jangam, D., Feschotte, C., and Betrán, E., Transposable element domestication as an adaptation to evolutionary conflicts, Trends Genet., 2017, vol. 33, no. 11, pp. 817–831. https://doi.org/10.1016/j.tig.2017.07.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowen, N.J. and Jordan, I.K., Exaptation of protein coding sequences from transposable elements, Genome Dyn., 2007, vol. 3, pp. 147–162. https://doi.org/10.1159/000107609

Article  CAS  PubMed  Google Scholar 

Feschotte, C. and Pritham, E.J., DNA transposons and the evolution of eukaryotic genomes, Annu. Rev. Genet., 2007, vol. 41, pp. 331–368. https://doi.org/10.1146/annurev.genet.40.110405.090448

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinzelle, L., Izsvák, Z., and Ivics, Z., Molecular domestication of transposable elements: from detrimental parasites to useful host genes, Cell. Mol. Life Sci., 2009, vol. 66, no. 6, pp. 1073–1093. https://doi.org/10.1007/s00018-009-8376-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapitonov, V.V. and Jurka, J., RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons, PLoS Biol., 2005, vol. 3, no. 6. https://doi.org/10.1371/journal.pbio.0030181

Panchin, Y. and Moroz, L.L., Molluscan mobile elements similar to the vertebrate recombination-activating genes, Biochem. Biophys. Res. Commun., 2008, vol. 369, no. 3, pp. 818–823. https://doi.org/10.1016/j.bbrc.2008.02.097

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, H.S., Chen, Q., Kim, S.K., et al., The DDN catalytic motif is required for metnase functions in non-homologous end joining (NHEJ) repair and replication restart, J. Biol. Chem., 2014, vol. 289, no. 15, pp. 10930–10938. https://doi.org/10.1074/jbc.M113.533216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mateo, L. and González, J., Pogo-like transposases have been repeatedly domesticated into CENP-B-related proteins, Genome Biol. Evol., 2014, vol. 6, no. 8, pp. 2008–2016. https://doi.org/10.1093/gbe/evu153

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puzakov, M.V., Puzakova, L.V., and Cheresiz, S.V., The Tc1-like elements with the spliceosomal introns in mollusk genomes, Mol. Genet. Genomics, 2020, vol. 295, no. 3, pp. 621–633. https://doi.org/10.1007/s00438-020-01645-1

Article  CAS  PubMed  Google Scholar 

Altschul, S.F., Madden, T.L, Schäffer, A.A., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, vol. 25, no. 17. https://doi.org/10.1093/nar/25.17.3389

Yamada, K.D., Tomii, K., and Katoh, K., Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees, Bioinformatics, 2016, vol. 32, no. 21, pp. 3246–3251. https://doi.org/10.1093/bioinformatics/btw412

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 2015, vol. 32, no. 1, pp. 268–274. https://doi.org/10.1093/molbev/msu300

Article  CAS  PubMed  Google Scholar 

Hoang, D.T., Chernomor, O., von Haeseler, A., et al., UFBoot2: improving the ultrafast bootstrap approximation, Mol. Biol. Evol., 2018, vol. 35, no. 2, pp. 518–522. https://doi.org/10.1093/molbev/msx281

Article  CAS  PubMed  Google Scholar 

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., ModelFinder: fast model selection for accurate phylogenetic estimates, Nat. Methods, 2017, vol. 14, no. 6, pp. 587–589. https://doi.org/10.1038/nmeth.4285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L., Near-optimal probabilistic RNA-seq quantification, Nat. Biotechnol., 2016, vol. 34, no. 5, pp. 525–527. https://doi.org/10.1038/nbt.3519

Article  CAS  PubMed  Google Scholar 

Schaack, S., Gilbert, C., and Feschotte, C., Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution, Trends Ecol. Evol., 2010, vol. 25, no. 9, pp. 537–546. https://doi.org/10.1016/j.tree.2010.06.001

Article  PubMed  PubMed Central  Google Scholar 

Blumenstiel, J.P., Birth, school, work, death, and resurrection: the life stages and dynamics of transposable element proliferation, Genes (Basel). 2019, vol. 10, no. 5, p. 336. https://doi.org/10.3390/genes10050336

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puzakov, M.V., Puzakova, L.V., and Cheresiz, S.V., An analysis of IS630/Tc1/mariner transposons in the genome of a Pacific oyster, Crassostrea gigas, J. Mol. Evol., 2018, vol. 86, pp. 566–580. https://doi.org/10.1007/s00239-018-9868-2

Article  CAS  PubMed  Google Scholar 

Cheresiz, S.V., Yurchenko, N.N., Ivannikov, A.V., and Zakharov, I.K., Mobile elements and stress, Inf. Vestn. Vavilovskogo O-va. Genet. Sel., 2008, vol. 12, nos. 1–2, pp. 217–242.

Google Scholar 

Yurchenko, N.N., Kovalenko, L.V., and Zakharov, I.K., Transposable elements: instability of genes and genomes, Russ. J. Genet.: Appl. Res., 2011, vol. 1, no. 6. pp. 489–496. https://doi.org/10.1134/S2079059711060141

Article  Google Scholar 

Piacentini, L., Fanti, L., Specchia, V., et al., Transposons, environmental changes, and heritable induced phenotypic variability, Chromosoma, 2014, vol. 123, pp. 345–354. https://doi.org/10.1007/s00412-014-0464-y

Article  PubMed  PubMed Central  Google Scholar 

Grow, E.J., Flynn, R.A., Chavez, S.L., et al., Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells, Nature, 2015, vol. 522, pp. 221–225. https://doi.org/10.1038/nature14308

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif