Bourque, G., Burns, K.H., Gehring, M., et al., Ten things you should know about transposable elements, Genome Biol., 2018, vol. 19, no. 1, p. 199. https://doi.org/10.1186/s13059-018-1577-z
Article CAS PubMed PubMed Central Google Scholar
Kojima, K.K., Structural and sequence diversity of eukaryotic transposable elements, Genes Genet. Syst., 2020, vol. 94, pp. 233–252. https://doi.org/10.1266/ggs.18-00024
Article CAS PubMed Google Scholar
Wells, J.N. and Feschotte, C., A field guide to eukaryotic transposable elements, Annu. Rev. Genet., 2020, vol. 23, no. 54, pp. 539–561. https://doi.org/10.1146/annurev-genet-040620-022145
Wallau, G.L., Ortiz, M.F., and Loreto, E.L., Horizontal transposon transfer in eukarya: detection, bias, and perspectives, Genome Biol. Evol., 2012, vol. 4, no. 8, pp. 689–699. https://doi.org/10.1093/gbe/evs055
Article CAS PubMed Google Scholar
Casacuberta, E. and González, J., The impact of transposable elements in environmental adaptation, Mol. Ecol., 2013, vol. 22, no. 6, pp. 1503–1517. https://doi.org/10.1111/mec.12170
Article CAS PubMed Google Scholar
Piacentini, L., Fanti, L., Specchia, V., et al., Transposons, environmental changes, and heritable induced phenotypic variability, Chromosoma, 2014, vol. 123, no. 4, pp. 345–354. https://doi.org/10.1007/s00412-014-0464-y
Article PubMed PubMed Central Google Scholar
Auvinet, J., Graça, P., Belkadi, L., et al., Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus, BMC Genomics, 2018, vol. 19, no. 1, p. 339. https://doi.org/10.1186/s12864-018-4714-x
Article CAS PubMed PubMed Central Google Scholar
Jangam, D., Feschotte, C., and Betrán, E., Transposable element domestication as an adaptation to evolutionary conflicts, Trends Genet., 2017, vol. 33, no. 11, pp. 817–831. https://doi.org/10.1016/j.tig.2017.07.011
Article CAS PubMed PubMed Central Google Scholar
Bowen, N.J. and Jordan, I.K., Exaptation of protein coding sequences from transposable elements, Genome Dyn., 2007, vol. 3, pp. 147–162. https://doi.org/10.1159/000107609
Article CAS PubMed Google Scholar
Feschotte, C. and Pritham, E.J., DNA transposons and the evolution of eukaryotic genomes, Annu. Rev. Genet., 2007, vol. 41, pp. 331–368. https://doi.org/10.1146/annurev.genet.40.110405.090448
Article CAS PubMed PubMed Central Google Scholar
Sinzelle, L., Izsvák, Z., and Ivics, Z., Molecular domestication of transposable elements: from detrimental parasites to useful host genes, Cell. Mol. Life Sci., 2009, vol. 66, no. 6, pp. 1073–1093. https://doi.org/10.1007/s00018-009-8376-3
Article CAS PubMed PubMed Central Google Scholar
Kapitonov, V.V. and Jurka, J., RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons, PLoS Biol., 2005, vol. 3, no. 6. https://doi.org/10.1371/journal.pbio.0030181
Panchin, Y. and Moroz, L.L., Molluscan mobile elements similar to the vertebrate recombination-activating genes, Biochem. Biophys. Res. Commun., 2008, vol. 369, no. 3, pp. 818–823. https://doi.org/10.1016/j.bbrc.2008.02.097
Article CAS PubMed PubMed Central Google Scholar
Kim, H.S., Chen, Q., Kim, S.K., et al., The DDN catalytic motif is required for metnase functions in non-homologous end joining (NHEJ) repair and replication restart, J. Biol. Chem., 2014, vol. 289, no. 15, pp. 10930–10938. https://doi.org/10.1074/jbc.M113.533216
Article CAS PubMed PubMed Central Google Scholar
Mateo, L. and González, J., Pogo-like transposases have been repeatedly domesticated into CENP-B-related proteins, Genome Biol. Evol., 2014, vol. 6, no. 8, pp. 2008–2016. https://doi.org/10.1093/gbe/evu153
Article CAS PubMed PubMed Central Google Scholar
Puzakov, M.V., Puzakova, L.V., and Cheresiz, S.V., The Tc1-like elements with the spliceosomal introns in mollusk genomes, Mol. Genet. Genomics, 2020, vol. 295, no. 3, pp. 621–633. https://doi.org/10.1007/s00438-020-01645-1
Article CAS PubMed Google Scholar
Altschul, S.F., Madden, T.L, Schäffer, A.A., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, vol. 25, no. 17. https://doi.org/10.1093/nar/25.17.3389
Yamada, K.D., Tomii, K., and Katoh, K., Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees, Bioinformatics, 2016, vol. 32, no. 21, pp. 3246–3251. https://doi.org/10.1093/bioinformatics/btw412
Article CAS PubMed PubMed Central Google Scholar
Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 2015, vol. 32, no. 1, pp. 268–274. https://doi.org/10.1093/molbev/msu300
Article CAS PubMed Google Scholar
Hoang, D.T., Chernomor, O., von Haeseler, A., et al., UFBoot2: improving the ultrafast bootstrap approximation, Mol. Biol. Evol., 2018, vol. 35, no. 2, pp. 518–522. https://doi.org/10.1093/molbev/msx281
Article CAS PubMed Google Scholar
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., et al., ModelFinder: fast model selection for accurate phylogenetic estimates, Nat. Methods, 2017, vol. 14, no. 6, pp. 587–589. https://doi.org/10.1038/nmeth.4285
Article CAS PubMed PubMed Central Google Scholar
Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L., Near-optimal probabilistic RNA-seq quantification, Nat. Biotechnol., 2016, vol. 34, no. 5, pp. 525–527. https://doi.org/10.1038/nbt.3519
Article CAS PubMed Google Scholar
Schaack, S., Gilbert, C., and Feschotte, C., Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution, Trends Ecol. Evol., 2010, vol. 25, no. 9, pp. 537–546. https://doi.org/10.1016/j.tree.2010.06.001
Article PubMed PubMed Central Google Scholar
Blumenstiel, J.P., Birth, school, work, death, and resurrection: the life stages and dynamics of transposable element proliferation, Genes (Basel). 2019, vol. 10, no. 5, p. 336. https://doi.org/10.3390/genes10050336
Article CAS PubMed PubMed Central Google Scholar
Puzakov, M.V., Puzakova, L.V., and Cheresiz, S.V., An analysis of IS630/Tc1/mariner transposons in the genome of a Pacific oyster, Crassostrea gigas, J. Mol. Evol., 2018, vol. 86, pp. 566–580. https://doi.org/10.1007/s00239-018-9868-2
Article CAS PubMed Google Scholar
Cheresiz, S.V., Yurchenko, N.N., Ivannikov, A.V., and Zakharov, I.K., Mobile elements and stress, Inf. Vestn. Vavilovskogo O-va. Genet. Sel., 2008, vol. 12, nos. 1–2, pp. 217–242.
Yurchenko, N.N., Kovalenko, L.V., and Zakharov, I.K., Transposable elements: instability of genes and genomes, Russ. J. Genet.: Appl. Res., 2011, vol. 1, no. 6. pp. 489–496. https://doi.org/10.1134/S2079059711060141
Piacentini, L., Fanti, L., Specchia, V., et al., Transposons, environmental changes, and heritable induced phenotypic variability, Chromosoma, 2014, vol. 123, pp. 345–354. https://doi.org/10.1007/s00412-014-0464-y
Article PubMed PubMed Central Google Scholar
Grow, E.J., Flynn, R.A., Chavez, S.L., et al., Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells, Nature, 2015, vol. 522, pp. 221–225. https://doi.org/10.1038/nature14308
留言 (0)