Regulation of formin INF2 and its alteration in INF2-linked inherited disorders

Schönichen A, Geyer M (2010) Fifteen formins for an actin filament: a molecular view on the regulation of human formins. Biochim Biophys Acta - Mol Cell Res 1803:152–163. https://doi.org/10.1016/j.bbamcr.2010.01.014

Article  CAS  Google Scholar 

Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11:62–74. https://doi.org/10.1038/nrm2816

Article  CAS  PubMed  Google Scholar 

Goode BL, Eck MJ (2007) Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 76:593–627. https://doi.org/10.1146/annurev.biochem.75.103004.142647

Article  CAS  PubMed  Google Scholar 

Bartolini F, Gundersen GG (2010) Formins and microtubules. Biochim Biophys Acta Mol Cell Res 1803:164–173. https://doi.org/10.1016/j.bbamcr.2009.07.006

Article  CAS  Google Scholar 

DeWard AD, Alberts AS (2008) Microtubule stabilization: formins assert their independence. Curr Biol 18:R605–R608. https://doi.org/10.1016/j.cub.2008.06.001

Article  CAS  PubMed  Google Scholar 

Labat-de-Hoz L, Alonso MA (2021) Formins in human disease. Cells 10:2554. https://doi.org/10.3390/cells10102554

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gul IS, Hulpiau P, Saeys Y, van Roy F (2017) Metazoan evolution of the armadillo repeat superfamily. Cell Mol Life Sci 74:525–541. https://doi.org/10.1007/s00018-016-2319-6

Article  CAS  PubMed  Google Scholar 

Rose R, Weyand M, Lammers M et al (2005) Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435:513–518. https://doi.org/10.1038/nature03604

Article  CAS  PubMed  Google Scholar 

Otomo T, Otomo C, Tomchick DR et al (2005) Structural basis of Rho GTPase-mediated activation of the formin mDia1. Mol Cell 18:273–281. https://doi.org/10.1016/j.molcel.2005.04.002

Article  CAS  PubMed  Google Scholar 

Lammers M, Rose R, Scrima A, Wittinghofer A (2005) The regulation of mDia1 by autoinhibition and its release by Rho-GTP. EMBO J 24:4176–4187. https://doi.org/10.1038/sj.emboj.7600879

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gould CJ, Maiti S, Michelot A et al (2011) The formin DAD domain plays dual roles in autoinhibition and actin nucleation. Curr Biol 21:384–390. https://doi.org/10.1016/j.cub.2011.01.047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304. https://doi.org/10.1126/science.1062023

Article  CAS  PubMed  Google Scholar 

Kühn S, Geyer M (2014) Formins as effector proteins of Rho GTPases. Small GTPases 5:e983876. https://doi.org/10.4161/sgtp.29513

Article  CAS  Google Scholar 

Valencia DA, Quinlan ME (2021) Formins. Curr Biol 31:R517–R522. https://doi.org/10.1016/j.cub.2021.02.047

Article  CAS  PubMed  Google Scholar 

Schulte A, Stolp B, Schönichen A et al (2008) The Human formin FHOD1 contains a bipartite structure of FH3 and GTPase-binding domains required for activation. Structure 16:1313–1323. https://doi.org/10.1016/j.str.2008.06.008

Article  CAS  PubMed  Google Scholar 

Ramabhadran V, Korobova F, Rahme GJ, Higgs HN (2011) Splice variant-specific cellular function of the formin INF2 in maintenance of Golgi architecture. Mol Biol Cell 22:4822–4833. https://doi.org/10.1091/mbc.E11-05-0457

Article  CAS  PubMed  PubMed Central  Google Scholar 

Labat-de-Hoz L, Comas L, Rubio-Ramos A et al (2022) Structure and function of the N-terminal extension of the formin INF2. Cell Mol Life Sci 79:571. https://doi.org/10.1007/s00018-022-04581-y

Article  CAS  PubMed  Google Scholar 

Westendorf JJ (2001) The formin/diaphanous-related protein, FHOS, interacts with Rac1 and activates transcription from the serum response element. J Biol Chem 276:46453–46459. https://doi.org/10.1074/jbc.M105162200

Article  CAS  PubMed  Google Scholar 

Watanabe N, Kato T, Fujita A et al (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1:136–143. https://doi.org/10.1038/11056

Article  CAS  PubMed  Google Scholar 

Madrid R, Aranda JF, Rodríguez-Fraticelli AE et al (2010) The formin INF2 regulates basolateral-to-apical transcytosis and lumen formation in association with Cdc42 and MAL2. Dev Cell 18:814–827. https://doi.org/10.1016/j.devcel.2010.04.001

Article  CAS  PubMed  Google Scholar 

Chhabra ES, Higgs HN (2006) INF2 is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J Biol Chem 281:26754–26767. https://doi.org/10.1074/jbc.M604666200

Article  CAS  PubMed  Google Scholar 

Dominguez R (2016) The WH2 domain and actin nucleation: necessary but insufficient. Trends Biochem Sci 41:478–490. https://doi.org/10.1016/j.tibs.2016.03.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gurel PS, Ge P, Grintsevich EE et al (2014) INF2-mediated severing through actin filament encirclement and disruption. Curr Biol 24:156–164. https://doi.org/10.1016/j.cub.2013.12.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palmer NJ, Barrie KR, Dominguez R (2024) Mechanisms of actin filament severing and elongation by formins. Nature 632:437–442. https://doi.org/10.1038/s41586-024-07637-0

Article  CAS  PubMed  Google Scholar 

Rust MB, Khudayberdiev S, Pelucchi S, Marcello E (2020) CAPt’n of actin dynamics: recent advances in the molecular, developmental and physiological functions of cyclase-associated protein (CAP). Front Cell Dev Biol 8:586631. https://doi.org/10.3389/fcell.2020.586631

Article  PubMed  PubMed Central  Google Scholar 

Mu A, Fung TS, Francomacaro LM et al (2020) Regulation of INF2-mediated actin polymerization through site-specific lysine acetylation of actin itself. Proc Natl Acad Sci USA 117:439–447. https://doi.org/10.1073/pnas.1914072117

Article  CAS  Google Scholar 

Mu A, Fung TS, Kettenbach AN et al (2019) A complex containing lysine-acetylated actin inhibits the formin INF2. Nat Cell Biol 21:592–602. https://doi.org/10.1038/s41556-019-0307-4

Article  CAS  PubMed Central  Google Scholar 

Wales P, Schuberth CE, Aufschnaiter R et al (2016) Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. eLife 5:e19850. https://doi.org/10.7554/eLife.19850

Article  PubMed  PubMed Central  Google Scholar 

Hyndman KA, Knepper MA (2017) Dynamic regulation of lysine acetylation: the balance between acetyltransferase and deacetylase activities. Am J Physiol-Ren Physiol 313:F842–F846. https://doi.org/10.1152/ajprenal.00313.2017

Article 

留言 (0)

沒有登入
gif