Li G, Lou HX. Strategies to diversify natural products for drug discovery. Med Res Rev. 2018;38:1255–94. https://doi.org/10.1002/med.21474
Usmanov D, Rasulev B, Syrov V, Yusupova U, Ramazonov N. Structure-hepatoprotective activity relationship study of iridoids: a QSAR analysis. Int J Quant Struct -Prop Relatsh. 2020;5:48–58. https://doi.org/10.4018/IJQSPR.20200701.oa3
Rasulev BF, Saidkhodzhaev AI, Nazrullaev SS, Akhmedkhodzhaeva KS, Khushbaktova ZA, Leszczynski J. Molecular modeling and QSAR analysis of the estrogenic activity of terpenoids isolated from Ferula plants. SAR QSAR Environ Res. 2007;18:663–73. https://doi.org/10.1080/10629360701428631
Article CAS PubMed Google Scholar
Turabekova MA, Rasulev BF, Levkovich MG, Abdullaev ND, Leszczynski J. Aconitum and Delphinium sp. Alkaloids as Antagonist Modulators of Voltage-Gated Na+ Channels. AM1/DFT Electronic Structure Investigations and QSAR Studies. Computl Biol Chem. 2008;32:88–101. https://doi.org/10.1016/j.compbiolchem.2007.10.003
Paukku Y, Rasulev BF, Syrov V, Khushbaktova Z, Leszczynski J. Structure-hepatoprotective activity relationship study of sesquiterpene lactones: a QSAR analysis. Int J Quantum Chem. 2009;109:17–27. https://doi.org/10.1002/qua.21647
Turabekova MA, Rasulev BF, Dzhakhangirov FN, Salikhov S I. Aconitum and Delphinium alkaloids. “Drug-likeness” descriptors related to toxic mode of action. Environ Toxicol Pharmacol. 2008;25:310–20.
Article CAS PubMed Google Scholar
Turabekova MA, Vinogradova VI, Werbovetz KA, Capers J, Rasulev BF, Levkovich MG, et al. Structure-activity relationship investigations of leishmanicidal N-benzylcytisine derivatives. Chem Biol Drug Des. 2011;78:183–9. https://doi.org/10.1111/j.1747-0285.2011.01092.x
Article CAS PubMed Google Scholar
Chandra S, Rawat DS. Medicinal plants of the family Caryophyllaceae: a review of ethno-medicinal uses and pharmacological properties. Integr Med Res. 2015;4:123–31. https://doi.org/10.1016/j.imr.2015.06.004
Article PubMed PubMed Central Google Scholar
Martín-Gómez JJ, Porceddu M, Bacchetta G, Cervantes E. Seed morphology in species from the Silene mollissima aggregate (Caryophyllaceae) by comparison with geometric models. Plants. 2022;11:901. https://doi.org/10.3390/plants11070901
Article PubMed PubMed Central Google Scholar
Singh R, Sharma R, Mal G, Varshney R. A comparative analysis of saponin-enriched fraction from Silene vulgaris (Moench) Garcke, Sapindus mukorossi (Gaertn) and Chlorophytum borivilianum (Santapau and Fernandes): an in vitro hemolytic and cytotoxicity evaluation. Anim Biotechnol. 2020;33:193–9. https://doi.org/10.1080/10495398.2020.1775627
Article CAS PubMed Google Scholar
Yusupova UY, Ramazonov NS, Syrov VN, Sagdullaev SS Phytoecdysteroids. In: Phytoecdysteroids. Singapore: Springer; 2021. P.49-66.
Bechkri S, Magid AA, Khalfallah A, Voutquenne-Nazabadioko L, Kabouche A, Sayagh C, et al. Antioxidant activity-guided isolation of flavonoids from Silene gallica aerial parts. Phytochem Lett. 2022;50:61–66. https://doi.org/10.1016/j.phytol.2022.05.002
Kremer D, Košir IJ, Potočnik T, Rogulj N, Načinović K, Randić M, et al. Phenolic compounds in two subspecies of Drypis spinosa L.(Caryophyllaceae) in Croatia. Acta Botanica Croatica. 2021;8:43–47. https://doi.org/10.37427/botcro-2020-015
Das N, Mishra SK, Bishayee A, Ali ES, Bishayee A. The phytochemical, biological, and medicinal attributes of phytoecdysteroids: an updated review. Acta Pharm Sin B. 2021;11:1740–66. https://doi.org/10.1016/j.apsb.2020.10.012
Article CAS PubMed Google Scholar
Rasulev BF, Abdullaev ND, Syrov VN, Leszczynski J. A quantitative structure-activity relationship (QSAR) study of the antioxidant activity of flavonoids. QSAR Comb Sci. 2005;24:1056–65. https://doi.org/10.1002/qsar.200430013
Bushneva OA, Ovodova RG, Shashkov AS, Ovodov YS. Structural studies on hairy region of pectic polysaccharide from campion Silene vulgaris (Oberna behen). Carbohydr Polym. 2002;49:471–8. https://doi.org/10.1016/S0144-8617(02)00015-2
Takahashi N, Li W, Koike K. Oleanane-type triterpenoid saponins from Silene armeria. Phytochemistry. 2016;129:77–85. https://doi.org/10.1016/j.phytochem.2016.07.011
Article CAS PubMed Google Scholar
Ilardo M, Bose R, Meringer M, Rasulev B, Grefenstette N, Stephenson J, et al. Adaptive properties of the genetically encoded amino acid alphabet are inherited from its subsets. Sci Rep. 2019;9:12468. https://doi.org/10.1038/s41598-019-47574-x
Article CAS PubMed PubMed Central Google Scholar
Muszyńska E, Labudda M. Dual role of metallic trace elements in stress biology—from negative to beneficial impact on plants. Int J Mol Sci. 2019;20:3117. https://doi.org/10.3390/ijms20133117
Article CAS PubMed PubMed Central Google Scholar
Güclu-Ustundağ O, Mazza G. Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 2007;47:231–58. https://doi.org/10.1080/10408390600698197
Article CAS PubMed Google Scholar
Baky MH, Elsaid MB, Farag MA. Phytochemical and biological diversity of triterpenoid saponins from family Sapotaceae: A comprehensive review. Phytochemistry. 2022;202:113345. https://doi.org/10.1016/j.phytochem.2022.113345
Article CAS PubMed Google Scholar
Hussein IA, Srivedavyasasri R, Atef A, Mohammad AEI, Ross SA. Chemical constituents from Silene schimperiana Boiss. belonging to Caryophyllaceae and their chemotaxonomic significance. Biochem Syst Ecol. 2020;92:104113. https://doi.org/10.1016/j.bse.2020.104113
Claude E, Lafont R, Plumb RS, Wilson ID. High performance Reversed-Phase Thin-Layer Chromatography-Desorption electrospray ionisation-time of flight high resolution mass spectrometric detection and imaging (HPTLC/DESI/ToFMS) of phytoecdysteroids. J Chromatogr B. 2022;1200:123265. https://doi.org/10.1016/j.jchromb.2022.123265
Yusupova UY, Ramazonov NS, Syrov VN, Sagdullaev SS. Phytoecdysteroids. In: Phytoecdysteroids. Singapore: Springer; 2021. p.1–48
Reddy PP. Agro-ecological approaches to pest management for sustainable agriculture. Singapore: Springer; 2017.
Elouafy Y, Mortada S, El Yadini A, Hnini M, Aalilou Y, Harhar H, et al. Bioactivity of walnut: investigating the triterpenoid saponin extracts of juglans regia kernels for antioxidant, anti-diabetic, and antimicrobial properties. Prog Microbes Mol Biol. 2023;6:a0000325. https://doi.org/10.36877/pmmb.a0000325
Mamarasulov B, Davranov K, Jabborova D. Phytochemical, pharmacological and biological properties of Ajuga turkestanica (Rgl.) Brig (Lamiaceae). Ann Phytomed. 2020;9:44–57. https://doi.org/10.21276/ap.2020.9.1.6
Kamal N, Mio Asni NS, Rozlan INA, Mohd Azmi MAH, Mazlan NW, Mediani A, et al. Traditional Medicinal Uses, Phytochemistry, Biological Properties, and Health Applications of Vitex sp. Plants. 2022;11:1944. https://doi.org/10.3390/plants11151944
Article CAS PubMed PubMed Central Google Scholar
Kayani WK, Dilshad E, Ahmed T, Ismail H, Mirza B. Evaluation of Ajuga bracteosa for antioxidant, anti-inflammatory, analgesic, antidepressant and anticoagulant activities. BMC Complement Altern Med. 2016;16:375. https://doi.org/10.1186/s12906-016-1363-y
Article CAS PubMed PubMed Central Google Scholar
Bajguz A, Bąkała I, Talarek M. Ecdysteroids in plants and their pharmacological effects in vertebrates and humans. Stud Nat Products Chem. 2015;45:121–45. https://doi.org/10.1016/B978-0-444-63473-3.00005-8
Arif Y, Singh P, Bajguz A, Hayat S. Phytoecdysteroids: distribution, structural diversity, biosynthesis, activity, and crosstalk with phytohormones. Int J Mol Sci. 2022;23:8664. https://doi.org/10.3390/ijms23158664
Article CAS PubMed PubMed Central Google Scholar
Yusupova UY, Usmanov DA, Ramazonov NS. Phytoecdysteroids from the aerial part of Silene popovii. Chem Nat Compd. 2020;56:562–3.
留言 (0)