Selenium nanoparticles loaded nanofibers ameliorate cardiac function after acute myocardial infarction in rat MI model

1. Shahabadi N, Zendehcheshm S, Khademi F. Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnol Rep (Amst). 2021;30:e00615. 
2. Boroumand S, Haeri A, Nazeri N, Rabbani S. Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds, and Pharmacological Agents. Iran J Pharm Res. 2021;20(4):467-496. 
3. Li M, Wu H, Yuan Y, Hu B, Gu N. Recent fabrications and applications of cardiac patch in myocardial infarction treatment. View. 2022;3(2):20200153.
4. Mei X, Cheng K. Recent Development in Therapeutic Cardiac Patches. Front Cardiovasc Med. 2020;7:610364. 
5. Carvalho T, Ezazi NZ, Correia A, Vilela C, Santos HA, Freire CS. Gelatin‐Lysozyme Nanofibrils Electrospun Patches with Improved Mechanical, Antioxidant and Bioresorbability Properties for Myocardial Regeneration Applications. Adv Funct Mater. 2022:2113390.
6. Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A. Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress. J Trace Elem Med Biol. 2015;32:135-144.
7. Mei X, Cheng K. Recent development in therapeutic cardiac patches. Front Cardiovasc Med. 2020;7:610364.
8. Nazari H, Heirani-Tabasi A, Esmaeili E, Kajbafzadeh AM, Hassannejad Z, Boroomand S, et al. Decellularized human amniotic membrane reinforced by MoS(2)-Polycaprolactone nanofibers, a novel conductive scaffold for cardiac tissue engineering. J Biomater Appl. 2022;36(9):1527-1539. 
9. Sigaroodi F, Rahmani M, Parandakh A, Boroumand S, Rabbani S, Khani M-M. Designing cardiac patches for myocardial regeneration–a review. Int J Polym Mater. 2024;73(7):581-599.
10.    Mondal D, Griffith M, Venkatraman SS. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. Int J Polym. Mater. 2016;65:255-265.
11.    Vogt L, Rivera LR, Liverani L, Piegat A, El Fray M, Boccaccini AR. Poly (ε-caprolactone)/poly (glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Mater Sci Eng C Mater Biol Appl. 2019;103:109712.
12.    Rai R, Tallawi M, Frati C, Falco A, Gervasi A, Quaini F, et al. Bioactive electrospun fibers of poly (glycerol sebacate) and poly (ε‐caprolactone) for cardiac patch application. Adv Healthc Mater. 2015;4(13):2012-2025.
13.    Spearman BS, Hodge AJ, Porter JL, Hardy JG, Davis ZD, Xu T, et al. Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells. Acta Biomater. 2015;28:109-120. 
14.    Yang Y, Lei D, Huang S, Yang Q, Song B, Guo Y, et al. Elastic 3D-Printed Hybrid Polymeric Scaffold Improves Cardiac Remodeling after Myocardial Infarction. Adv Healthc Mater. 2019;8(10):e1900065. 
15.    He Y, Ye G, Song C, Li C, Xiong W, Yu L, et al. Mussel-inspired conductive nanofibrous membranes repair myocardial infarction by enhancing cardiac function and revascularization. Theranostics. 2018;8(18):5159-5177. 
16.    Ashtari K, Nazari H, Ko H, Tebon P, Akhshik M, Akbari M, et al. Electrically conductive nanomaterials for cardiac tissue engineering. Adv Drug Deliv Rev. 2019;144:162-179.
17.    Talebi A, Labbaf S, Karimzadeh F. A conductive film of chitosan-polycaprolcatone-polypyrrole with potential in heart patch application. Polym Test. 2019;75:254-261.
18.    Fatehi Hassanabad A, Zarzycki AN, Jeon K, Dundas JA, Vasanthan V, Deniset JF, et al. Prevention of post-operative adhesions: a comprehensive review of present and emerging strategies. Biomolecules. 2021;11(7):1027.
19.    Boroumand S, Hosseini S, Salehi M, Faridi Majidi R. Drug-loaded electrospun nanofibrous sheets as barriers against postsurgical adhesions in mice model. Nanomed Res J. 2017;2(1):64-72.
20.    Benstoem C, Goetzenich A, Kraemer S, Borosch S, Manzanares W, Hardy G, et al. Selenium and its supplementation in cardiovascular disease—what do we know? Nutrients. 2015;7(5):3094-3118.
21.    Dasgupta S, Aly AM. Dilated cardiomyopathy induced by chronic starvation and selenium deficiency. Case Rep Pediatr. 2016;2016.
22.    Zhang X, Liu C, Guo J, Song Y. Selenium status and cardiovascular diseases: meta-analysis of prospective observational studies and randomized controlled trials. Eur J Clin Nutr. 2016;70(2):162-169.
23.    Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A. Comparative analysis of cardiovascular effects of selenium nanoparticles and sodium selenite in zebrafish embryos. Artif Cells Nanomed Biotechnol. 2016;44(3):990-996.
24.    Alehagen U, Aaseth J, Johansson P. Reduced cardiovascular mortality 10 years after supplementation with selenium and coenzyme Q10 for four years: follow-up results of a prospective randomized double-blind placebo-controlled trial in elderly citizens. PloS one. 2015;10(12):e0141641.
25.    Flores-Mateo G, Navas-Acien A, Pastor-Barriuso R, Guallar E. Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr. 2006;84(4):762-773.
26.    Xiao S, Mao L, Xiao J, Wu Y, Liu H. Selenium nanoparticles inhibit the formation of atherosclerosis in apolipoprotein E deficient mice by alleviating hyperlipidemia and oxidative stress. Eur J Pharmacol. 2021;902:174120.
27.    Shimada BK, Alfulaij N, Seale LA. The Impact of Selenium Deficiency on Cardiovascular Function. Int J Mol Sci. 2021;22(19). 
28.    El-Ghazaly M, Fadel N, Rashed E, El-Batal A, Kenawy S. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can J Physiol Pharmacol. 2017;95(2):101-110.
29.    Boroumand S, Safari M, Shaabani E, Shirzad M, Faridi-Majidi R. Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Mater Res Express. 2019;6(8):0850d8. 
30.    Kalishwaralal K, Jeyabharathi S, Sundar K, Selvamani S, Prasanna M, Muthukumaran A. A novel biocompatible chitosan–Selenium nanoparticles (SeNPs) film with electrical conductivity for cardiac tissue engineering application. Mater Sci Eng C Mater Biol Appl. 2018;92:151-160.
31.    Naveenkumar S, Venkateshan N, Kaviyarasu K, Christyraj JRSS, Muthukumaran A. Optimum performance of a novel biocompatible scaffold comprising alginate-pectin-selenium nanoparticles for cardiac tissue engineering using C2C12 cells. J Mol Struct. 2023;1294:136457.
32.    Abbas MM, Abdelmonem HA, Mahmoud AH. Prophylactic Effect of Costus and Selenium Nanoparticles in Isoproterenol Induced Myocardial Infarction in Rats. Egypt J Hosp Med. 2022;89(1):4817-4823.
33.    Chen S, Tian H, Mao J, Ma F, Zhang M, Chen F, et al. Preparation and application of chitosan-based medical electrospun nanofibers. Int J Biol Macromol. 2023;226:410-422. 
34.    Chen J, Zhan Y, Wang Y, Han D, Tao B, Luo Z, et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater. 2018;80:154-168. 
35.    Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr Polym. 2023;300:120266. 
36.    Patel B, Manne R, Patel DB, Gorityala S, Palaniappan A, Kurakula M. Chitosan as Functional Biomaterial for Designing Delivery Systems in Cardiac Therapies. Gels. 2021;7(4):253.
37.    Boroumand S, Majidi RF, Gheibi A, Majidi RF. Selenium nanoparticles incorporated in nanofibers media eliminate H1N1 activity: a novel approach for virucidal antiviral and antibacterial respiratory mask. Environ Sci Pollut Res Int. 2024;31(2):2360-2376. 
38.    Karthik K, Cheriyan BV, Rajeshkumar S, Gopalakrishnan M. A review on selenium nanoparticles and their biomedical applications. Biomed. Technol. 2024;6:61-74.
39.    Lin W, Zhang J, Xu J-F, Pi J. The advancing of selenium nanoparticles against infectious diseases. Front Pharmacol. 2021;12:682284.
40.    George TA, Hsu CC, Meeson A, Lundy DJ. Nanocarrier-Based Targeted Therapies for Myocardial Infarction. Pharmaceutics. 2022;14(5). 
41.    Zulkifli MZA, Nordin D, Shaari N, Kamarudin SK. Overview of Electrospinning for Tissue Engineering Applications. Polymers (Basel). 2023;15(11). 
42.    Huang CL, Lee KM, Liu ZX, Lai RY, Chen CK, Chen WC, et al. Antimicrobial Activity of Electrospun Polyvinyl Alcohol Nanofibers Filled with Poly[2-(tert-butylaminoethyl) Methacrylate]-Grafted Graphene Oxide Nanosheets. Polymers (Basel). 2020;12(7). 
43.    Carvalho T, Ezazi NZ, Correia A, Vilela C, Santos HA, Freire CS. Gelatin‐lysozyme nanofibrils electrospun patches with improved mechanical, antioxidant, and bioresorbability properties for myocardial regeneration applications. Adv Funct Mater. 2022;32(21):2113390.
44.    Haney A, Hesla J, Hurst BS, Kettel LM, Murphy AA, Rock JA, et al. Expanded polytetrafluoroethylene (Gore-Tex Surgical Membrane) is superior to oxidized regenerated cellulose (Interceed TC7) in preventing adhesions. Fertil Steril. 1995;63(5):1021-1026.
45.    Boroumand S, Majidi RF, Gheibi A, Majidi RF. Selenium nanoparticles incorporated in nanofibers media eliminate H1N1 activity: a novel approach for virucidal antiviral and antibacterial respiratory mask. ESPR. 2024;31(2):2360-76.
46.    Jia Z, Li J, Gao L, Yang D, Kanaev A. Dynamic Light Scattering: A Powerful Tool for In Situ Nanoparticle Sizing. Colloids Interfaces. 2023;7(1):15.
47.    Ehtesabi H, Massah F. Improvement of hydrophilicity and cell attachment of polycaprolactone scaffolds using green synthesized carbon dots. Mater. Today Sustain. 2021;13:100075. 
48.    Li J, Fang W, Hao T, Dong D, Yang B, Yao F, et al. An anti-oxidative and conductive composite scaffold for cardiac tissue engineering. Compos B Eng. 2020;199:108285. 
49.    Liang Y, Mitriashkin A, Lim TT, Goh JC-H. Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials. 2021;276:121008.
50.    Cui Z, Ni NC, Wu J, Du G-Q, He S, Yau TM, et al. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics. 2018;8(10):2752.
51.    Yin Q, Zhu P, Liu W, Gao Z, Zhao L, Wang C, et al. A Conductive Bioengineered Cardiac Patch for Myocardial Infarction Treatment by Improving Tissue Electrical Integrity. Adv Healthc Mater. 2023;12(1):e2201856. 
52.    Liu W, Zhao L, Wang C, Zhou J. Conductive nanomaterials for cardiac tissues engineering. Engineered Regeneration. 2020;1:88-94. 
53.    Sauvage E, Matta J, Dang CT, Fan J, Cruzado G, Cicoira F, et al. Electroconductive cardiac patch based on bioactive PEDOT:PSS hydrogels. J Biomed Mater Res A. 2024; 112(10):1817-1826. 
54.    Yang X, SAN LOON K, Fu Y, Liu J, Peng Y, Zhang J, et al. Selenium nanoparticles reduce cardiomyocyte apoptosis in Ascites Syndrome in Broiler Chickens via the ATF6-DR5 signaling pathway. Anim Dis. 2023; 22 (3). 
55.    Norahan MH, Pourmokhtari M, Saeb MR, Bakhshi B, Zomorrod MS, Baheiraei N. Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2019;104:109921.
56.    Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C Mater Biol Appl. 2014;44:24-37.
57.    Mahmoudi M, Zhao M, Matsuura Y, Laurent S, Yang PC, Bernstein D, et al. Infection-resistant MRI-visible scaffolds for tissue engineering applications. BioImpacts: BI. 2016;6(2):111.
58.    Zuluaga M, Gregnanin G, Cencetti C, Di Meo C, Gueguen V, Letourneur D, et al. PVA/Dextran hydrogel patches as delivery system of antioxidant astaxanthin: A cardiovascular approach. Biomedical Materials. 2017;13(1):015020.
59.    Shiekh PA, Singh A, Kumar A. Engineering bioinspired antioxidant materials promoting cardiomyocyte functionality and maturation for tissue engineering application. ACS Appl Mater Interfaces. 2018;10(4):3260-3273.
60.    Norahan MH, Pourmokhtari M, Saeb MR, Bakhshi B, Soufi Zomorrod M, Baheiraei N. Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2019;104:109921. 
61.    Hariharan S, Dharmaraj S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology. 2020;28(3):667-695.
62.    Ojeda ML, Sobrino P, Rua RM, Gallego-Lopez MdC, Nogales F, Carreras O. Selenium, a dietary-antioxidant with cardioprotective effects, prevents the impairments in heart rate and systolic blood pressure in adolescent rats exposed to binge drinking treatment. Am J Drug Alcohol Abuse. 2021;47(6):680-693.
63.    Al-Mubarak AA, van der Meer P, Bomer N. Selenium, selenoproteins, and heart failure: current knowledge and future perspective. Curr Heart Fail Rep. 2021;18(3):122-131.
64.    Ahmadi P, Nazeri N, Derakhshan MA, Ghanbari H. Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int J Biol Macromol. 2021;180:590-598.
65.    Phan TTV, Hoang G, Nguyen VT, Nguyen TP, Kim HH, Mondal S, et al. Chitosan as a stabilizer and size-control agent for synthesis of porous flower-shaped palladium nanoparticles and their applications on photo-based therapies. Carbohydr Polym. 2019;205:340-352. 
66.    Franconetti A, Carnerero JM, Prado-Gotor R, Cabrera-Escribano F, Jaime C. Chitosan as a capping agent: Insights on the stabilization of gold nanoparticles. Carbohydr Polym. 2019;207:806-814. 
67.    Collado-González M, Montalbán MG, Peña-García J, Pérez-Sánchez H, Víllora G, Díaz Baños FG. Chitosan as stabilizing agent for negatively charged nanoparticles. Carbohydr Polym. 2017;161:63-70. 
68.    Laghrib F, Houcini H, Khalil F, Liba A, Bakasse M, Lahrich S, et al. Synthesis of Silver Nanoparticles Using Chitosan as Stabilizer Agent: Application towards Electrocatalytical Reduction of p‐Nitrophenol. ChemistrySelect. 2020;5(3):1220-1227.
69.    Costa M, Carreiro EP, Filho CM, Silva M, Gonçalves I, Souza EF, et al. Chitosan Salts as Stabilizing Agents for the Synthesis of Silver Nanoparticles (AgNPs). ChemistrySelect. 2023;8(1):e202203413.
70.    Chung S, Ercan B, Roy AK, Webster TJ. Addition of Selenium Nanoparticles to Electrospun Silk Scaffold Improves the Mammalian Cell Activity While Reducing Bacterial Growth. Front Physiol. 2016;7:297. 
71.    Doostmohammadi M, Forootanfar H, Shakibaie M, Torkzadeh-Mahani M, Rahimi HR, Jafari E, et al. Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing applications. J Biomater Appl. 2021;36(2):193-209. 
72.    Karthik KK, Cheriyan BV, Rajeshkumar S, Gopalakrishnan M. A review on selenium nanoparticles and their biomedical applications. Biomed. Technol. 2024;6:61-74. 
73.    Kamaruzaman NA, Yusoff ARM, Malek N, Talib M. Fabrication, characterization and degradation of electrospun poly (ε-caprolactone) infused with selenium nanoparticles. Malays J Fundam Appl Sci. 2021;17:295-305.
74.    Kamaruzaman NA, Yusoff ARM, Buang NA, Salleh NGN, editors. Effects on diameter and morphology of polycaprolactone nanofibers infused with various concentrations of selenium nanoparticles. AIP Conference Proceedings; 2017: AIP Publishing.
75.    Ping Z, Liu T, Xu H, Meng Y, Li W, Xu X, et al. Construction of highly stable selenium nanoparticles embedded in hollow nanofibers of polysaccharide and their antitumor activities. Nano Research. 2017;10:3775-3789.

留言 (0)

沒有登入
gif