1. Dasari A, Xue J, Deb S. Magnetic nanoparticles in bone tissue engineering. Nanomaterials (Basel). 2022;12(5):757.
2. Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR, et al. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J Control Release. 2018;274:35-55.
3. Codrea CI, Croitoru AM, Baciu CC, Melinescu A, Ficai D, Fruth V, et al. Advances in osteoporotic bone tissue engineering. J Clin Med. 2021;10(2):253.
4. Xu C, Wang M, Guo W, Sun W, Liu Y. Curcumin in osteosarcoma therapy: combining with immunotherapy, chemotherapeutics, bone tissue engineering materials and potential synergism with photodynamic therapy. Front Oncol. 2021;11:672490.
5. Zhu T, Cui Y, Zhang M, Zhao D, Liu G, Ding J. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact Mater. 2020;5(3):584-601.
6. Black CRM, Goriainov V, Gibbs D, Kanczler J, Tare RS, Oreffo ROC. Bone Tissue Engineering. Current Molecular Biology Reports. 2015;1(3):132-140.
7. Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nature Reviews Materials. 2020;5(8):584-603.
8. Li H, Pan S, Xia P, Chang Y, Fu C, Kong W, et al. Advances in the application of gold nanoparticles in bone tissue engineering. J Biol Eng. 2020;14:14.
9. Zafar MJ, Zhu D, Zhang Z. 3D printing of bioceramics for bone tissue engineering. Materials (Basel). 2019;12(20):3361.
10. Guo B, Ma PX. Conducting polymers for tissue engineering. Biomacromolecules. 2018;19(6):1764-1782.
11. Su X, Wang T, Guo S. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regen Ther. 2021;16:63-72.
12. Zhang Y, Wu D, Zhao X, Pakvasa M, Tucker AB, Luo H, et al. Stem cell-friendly scaffold biomaterials: applications for bone tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2020;8:598-607.
13. Boccaccio A, Ballini A, Pappalettere C, Tullo D, Cantore S, Desiate A. Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int J Biol Sci. 2011;7(1):112-132.
14. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363-408.
15. O’Keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinic--an overview. Tissue Eng Part B Rev. 2011;17(6):389-392.
16. Downey PA, Siegel MI. Bone biology and the clinical implications for osteoporosis. Phys Ther. 2006;86(1):77-91.
17. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455-498.
18. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3 Suppl 3(Suppl 3):S131-139.
19. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229-238.
20. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746.
21. Sims NA, Gooi JH. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol. 2008;19(5):444-451.
22. Andersen TL, Sondergaard TE, Skorzynska KE, Dagnaes-Hansen F, Plesner TL, Hauge EM, et al. A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol. 2009;174(1):239-247.
23. Ralston SH. Bone structure and metabolism. Medicine. 2013;41(10):581-585.
24. Jakob F, Ebert R, Ignatius A, Matsushita T, Watanabe Y, Groll J, et al. Bone tissue engineering in osteoporosis. Maturitas. 2013;75(2):118-124.
25. Mohammadi M, Alibolandi M, Abnous K, Salmasi Z, Jaafari MR, Ramezani M. Comparison of liposomal formulations incorporating BMP-2 peptide to induce bone tissue engineering. Nanomed J. 2020;7(3):225-230.
26. Wu Q, Wang X, Jiang F, Zhu Z, Wen J, Jiang X. Study of Sr–Ca–Si-based scaffolds for bone regeneration in osteoporotic models. Int J Oral Sci. 2020;12(1):25.
27. Bozorgi A, Sabouri L. Osteosarcoma, personalized medicine, and tissue engineering; an overview of overlapping fields of research. Cancer Treat Res Commun. 2021;27:100324.
28. Vacanti CA. The history of tissue engineering. J Cell Mol Med. 2006;10(3):569-576.
29. Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252-26262.
30. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2:403-430.
31. Toosi S, Behravan N, Behravan J. Nonunion fractures, mesenchymal stem cells and bone tissue engineering. J Biomed Mater Res A. 2018;106(9):2552-2562.
32. Toosi S, Naderi-Meshkin H, Kalalinia F, HosseinKhani H, Heirani-Tabasi A, Havakhah S, et al. Bone defect healing is induced by collagen sponge/polyglycolic acid. J Mater Sci Mater Med. 2019;30:1-10.
33. Alarçin E, Lee TY, Karuthedom S, Mohammadi M, Brennan MA, Lee DH, et al. Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomater Sci. 2018;6(6):1604-1615.
34. Burny F, Donkerwolcke M, Muster D. Biomaterials education: a challenge for medicine and industry in the late 1990s. Mater. Sci. Eng. A 1995;199(1):53-59.
35. Feng Y, Zhu S, Mei D, Li J, Zhang J, Yang S, et al. Application of 3D printing technology in bone tissue engineering: a review. Curr Drug Deliv. 2021;18(7):847-861.
36. Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol. 2005;94:1-22.
37. Mohammadi M, Alibolandi M, Abnous K, Salmasi Z, Jaafari MR, Ramezani M. Fabrication of hybrid scaffold based on hydroxyapatite-biodegradable nanofibers incorporated with liposomal formulation of BMP-2 peptide for bone tissue engineering. Nanomed J. 2018;14(7):1987-1997.
38. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med. 2006;10(1):7-19.
39. Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5-14.
40. Colnot C. Cell sources for bone tissue engineering: insights from basic science. Tissue Eng Part B Rev. 2011;17(6):449-457.
41. Shirzad M, Zolfagharian A, Matbouei A, Bodaghi M. Design, evaluation, and optimization of 3D printed truss scaffolds for bone tissue engineering. J Mech Behav Biomed Mater. 2021;120:104594.
42. Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog. 2009;25(6):1539-1560.
43. Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am. 2008;90 Suppl 1:36-42.
44. Zhang Y, Gulati K, Li Z, Di P, Liu Y. Dental implant nano-engineering: advances, limitations and future directions. Nanomaterials (Basel). 2021;11(10):2489.
45. Cestari F, Agostinacchio F, Galotta A, Chemello G, Motta A, Sglavo VM. Nano-hydroxyapatite derived from biogenic and bioinspired calcium carbonates: synthesis and in vitro bioactivity. Nanomaterials (Basel). 2021;11(2):264.
46. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546-554.
47. Koushik TM, Miller CM, Antunes E. Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv Healthc Mater. 2023;12(9):e2202766.
48. Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int. 2015;2015:729076.
49. Bighetti-Trevisan RL, Souza ATP, Tosin IW, Bueno NP, Crovace MC, Beloti MM, et al. Bioactive glass-ceramic for bone tissue engineering: an in vitro and in vivo study focusing on osteoclasts. Braz Oral Res. 2022;36:e022.
50. Dec P, Modrzejewski A, Pawlik A. Existing and novel biomaterials for bone tissue engineering. Int J Mol Sci. 2022;24(1):529.
51. Baino F, Novajra G, Vitale-Brovarone C. Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol. 2015;3:202.
52. Saberi A, Behnamghader A, Aghabarari B, Yousefi A, Majda D, Huerta MVM, et al. 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles. Int J Biol Macromol. 2022;207:9-22.
53. Xu F, Ren H, Zheng M, Shao X, Dai T, Wu Y, et al. Development of biodegradable bioactive glass ceramics by DLP printed containing EPCs/BMSCs for bone tissue engineering of rabbit mandible defects. J Mech Behav Biomed Mater. 2020;103:103532.
54. Kuru L, Griffiths GS, Petrie A, Olsen I. Alkaline phosphatase activity is upregulated in regenerating human periodontal cells. J Periodontal Res. 1999;34(2):123-127.
55. Caddeo S, Mattioli-Belmonte M, Cassino C, Barbani N, Dicarlo M, Gentile P, et al. Newly-designed collagen/polyurethane bioartificial blend as coating on bioactive glass-ceramics for bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2019;96:218-233.
56. Alibolandi M, Bagheri E, Mohammadi M, Sameiyan E, Ramezani M. Chapter 14 - Biopolymer-based hydrogel wound dressing. In: Azar AT, editor. Modeling and control of drug delivery systems: Academic Press; 2021. p. 227-51.
57. Thomas A, Bera J. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. J Biomater Sci Polym Ed. 2019;30(7):561-579.
58. Kwon JW, Lee YH, Lee BH, Kim JH, Suk KS. Clinical and radiological outcomes of non-window-type bioactive glass-ceramic cage in single-level ACDF versus PEEK cage filled with autologous bone. Sci Rep. 2024;14(1):4035.
59. Kumar A, Mir SM, Aldulijan I, Mahajan A, Anwar A, Leon CH, et al. Load-bearing biodegradable PCL-PGA-beta TCP scaffolds for bone tissue regeneration. J Biomed Mater Res B Appl Biomater. 2021;109(2):193-200.
60. He J, Lin Z, Hu X, Xing L, Liang G, Chen D, et al. Biocompatible and biodegradable scaffold based on polytrimethylene carbonate-tricalcium phosphate microspheres for tissue engineering. Colloids Surf B Biointerfaces. 2021;204:111808.
61. Thitiset T, Damrongsakkul S, Yodmuang S, Leeanansaksiri W, Apinun J, Honsawek S. A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering. Biomater Res. 2021;25(1):19.
62. Razazpour F, Najafi F, Moshaverinia A, Fatemi SM, Sima S. Synthesis and characterization of a photo-cross-linked bioactive polycaprolactone-based osteoconductive biocomposite. J Biomed Mater Res A. 2021;109(10):1858-1868.
63. Xu C, Chang Y, Xu Y, Wu P, Mu C, Nie A, et al. Silicon-phosphorus-nanosheets-integrated 3D-printable hydrogel as a bioactive and biodegradable scaffold for vascularized bone regeneration. Adv Healthc Mater. 2022;11(6):e2101911.
64. Gwon Y, Park S, Kim W, Han T, Kim H, Kim J. Radially patterned transplantable biodegradable scaffolds as topographically defined contact guidance platforms for accelerating bone regeneration. J Biol Eng. 2021;15(1):12.
65. Qasim M, Le NXT, Nguyen TPT, Chae DS, Park SJ, Lee NY. Nanohybrid biodegradable scaffolds for TGF-β3 release for the chondrogenic differentiation of human mesenchymal stem cells. Int J Pharm. 2020;581:119248.
66. Linder HR, Glass AA, Day DE, Sell SA. Manipulating air-gap electrospinning to create aligned polymer nanofiber-wrapped glass microfibers for cortical bone tissue engineering. Bioengineering (Basel). 2020;7(4):165.
67. Xing Z, Cai J, Sun Y, Cao M, Li Y, Xue Y, et al. Altered surface hydrophilicity on copolymer scaffolds stimulate the osteogenic differentiation of human mesenchymal stem cells. Polymers (Basel). 2020;12(7):1453.
68. Li C, Zhang W, Nie Y, Du X, Huang C, Li L, et al. Time-sequential and multi-functional 3D printed MgO(2) /PLGA scaffold developed as a novel biodegradable and bioactive bone substitute for challenging postsurgical osteosarcoma treatment. Adv Mater. 2023:e2308875.
69. Lin H, Li Z, Xie Z, Tang S, Huang M, Feng J, et al. An anti-infection and biodegradable TFRD-loaded porous scaffold promotes bone regeneration in segmental bone defects -experimental studies. Int J Surg. 2024;110(6):3269-3284.
70. Xu Y, Xu C, Yang K, Ma L, Li G, Shi Y, et al. Copper ion-modified germanium phosphorus nanosheets integrated with an electroactive and biodegradable hydrogel for neuro-vascularized bone regeneration. Adv Healthc Mater. 2023;12(27):e2301151.
71. Sun X, Mao Y, Liu B, Gu K, Liu H, Du W, et al. Mesenchymal stem cell-derived exosomes enhance 3D-printed scaffold functions and promote alveolar bone defect repair by enhancing angiogenesis. J Pers Med. 2023;13(2):180.
72. Dibazar ZE, Mohammadpour M, Samadian H, Zare S, Azizi M, Hamidi M, et al. Bacterial polyglucuronic Acid/Alginate/Carbon nanofibers hydrogel nanocomposite as a potential scaffold for bone tissueengineering. Materials (Basel). 2022;15(7):2494.
73. Gao F, Xu Z, Liang Q, Li H, Peng L, Wu M, et al. Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds. Adv Sci (Weinh). 2019;6(15):1900867.
74. Yue S, He H, Li B, Hou T. Hydrogel as a biomaterial for bone tissue engineering: a review. Nanomaterials (Basel). 2020;10(8):1511.
75. Dyondi D, Webster TJ, Banerjee R. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. Int J Nanomedicine. 2013;8:47-59.
76. Igwe JC, Mikael PE, Nukavarapu SP. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. J Tissue Eng Regen Med. 2014;8(2):131-142.
77. Li J, Li L, Wu T, Shi K, Bei Z, Wang M, et al. An injectable thermosensitive hydrogel containing resveratrol and dexamethasone-loaded carbonated hydroxyapatite microspheres for the regeneration of osteoporotic bone defects. Small Methods. 2024;8(1):e2300843.
78. Pan S, Yin Z, Shi C, Xiu H, Wu G, Heng Y, et al. Multifunctional injectable hydrogel microparticles loaded with miR-29a abundant BMSCs derived exosomes enhanced bone regeneration by regulating osteogenesis and angiogenesis. Small. 2024;20(16):e2306721.
79. Kotlarz M, Melo P, Ferreira AM, Gentile P, Dalgarno K. Cell seeding via bioprinted hydrogels supports cell migration into porous apatite-wollastonite bioceramic scaffolds for bone tissue engineering. Biomater Adv. 2023;153:213532.
80. Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, Hwang YS. Stem cells in bone tissue engineering. Biomed Mater. 2010;5(6):062001.
81. Yousefi A-M, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H. Prospect of stem cells in bone tissue engineering: a review. Stem Cells Int. 2016;2016:6180487.
82. Mito K, Lachnish J, Le W, Chan C, Chang YL, Yao J. Scaffold-free bone marrow-derived mesenchymal stem cell sheets enhance bone formation in a weight-bearing rat critical bone defect model. Tissue Eng Part A. 2024;30(3-4):107-114.
83. Liu Y, Chen P, Zhou T, Zeng J, Liu Z, Wang R, et al. Co-culture of STRO1 + human gingival mesenchymal stem cells and human umbilical vein endothelial cells in 3D spheroids: enhanced in vitro osteogenic and angiogenic capacities. Front Cell Dev Biol. 2024;12:1378035.
84. Duan W, Haque M, Kearney MT, Lopez MJ. Collagen and hydroxyapatite scaffolds activate distinct osteogenesis signaling pathways in adult adipose-derived multipotent stromal cells. Tissue Eng Part C Methods. 2017;23(10):592-603.
85. Gao X, Cheng H, Sun X, Lu A, Ruzbarsky JJ, Wang B, et al. Comparison of autologous blood clots with fibrin sealant as scaffolds for promoting human muscle-derived stem cell-mediated bone regeneration. Biomedicines. 2021;9(8):983.
86. Blum JS, Barry MA, Mikos AG. Bone regeneration through transplantation of genetically modified cells. Clin Plast Surg. 2003;30(4):611-620.
87. Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D. Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng. 2007;13(6):1135-1150.
88. Gao S, Chen B, Zhu Z, Du C, Zou J, Yang Y, et al. PI3K-Akt signaling regulates BMP2-induced osteogenic differentiation of mesenchymal stem cells (MSCs): a transcriptomic landscape analysis. Stem Cell Res. 2023;66:103010.
89. Chen G, Deng S, Zuo M, Wang J, Cheng D, Chen B. Non-viral CRISPR activation system targeting VEGF-A and TGF-β1 for enhanced osteogenesis of pre-osteoblasts implanted with dual-crosslinked hydrogel. Mater Today Bio. 2022;16:100356.
90. Minamide A, Boden SD, Viggeswarapu M, Hair GA, Oliver C, Titus L. Mechanism of bone formation with gene transfer of the cDNA encoding for the intracellular protein LMP-1. J Bone Joint Surg Am. 2003;85(6):1030-1039.
91. Chen Z, Gan L, Chen X, Zheng J, Shi S, Wu L, et al. LncRNA HOTAIRM1 promotes dental follicle stem cell-mediated bone regeneration by regulating HIF-1α/KDM6/EZH2/H3K27me3 axis. J Cell Physiol. 2023;238(7):1542-1557.
92. Hsu MN, Huang KL, Yu FJ, Lai PL, Truong AV, Lin MW, et al. Coactivation of endogenous Wnt10b and Foxc2 by CRISPR activation enhances BMSC osteogenesis and promotes calvarial Bone regeneration. Mol Ther. 2020;28(2):441-451.
93. Kato H, Watanabe K, Saito A, Onodera S, Azuma T, Takano M. Bone regeneration of induced pluripotent stem cells derived from peripheral blood cells in collagen sponge scaffolds. J Appl Oral Sci. 2022;30:e20210491.
94. Huo S, Zhou Y, He X, Wan M, Du W, Xu X, et al. Insight into the role of long non-coding RNAs during osteogenesis in mesenchymal stem cells. Curr Stem Cell Res Ther. 2018;13(1):52-59.
95. Chen X, Xie W, Zhang M, Shi Y, Xu S, Cheng H, et al. The emerging role of non-Coding RNAs in osteogenic differentiation of human bone marrow mesenchymal stem cells. Front Cell Dev Biol. 2022;10:903278.
留言 (0)