Conductive composite nanoscaffold of polyurethane/rGO as skin regeneration agent animal model

1. Nussbaum SR, Carter MJ, Fife CE, DaVanzo J, Haught R, Nusgart M, et al. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health. 2018;21(1):27-32.
2. Heyer K, Protz K, Glaeske G, Augustin M, Herberger K, Goepel L, et al. Effectiveness of advanced versus conventional wound dressings on healing of chronic wounds: systematic review and meta-analysis. Dermatology. 2013;226(2):172-184.
3. Abd El-Hack ME, Alagawany M, Arif M, Chaudhry MT, Emam MA, Patra AK, et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review. Int J Biol Macromol. 2020;164:2726-2744.
4. Saghazadeh S, Rinoldi C, Schot M, Saheb Kashaf S, Sharifi F, Jalilian E, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 2018;127:138-166.
5. Nakagami G, Sanada H, Konya C, Kitagawa A, Tadaka E, Tabata K, et al. Effect of vibration on skin blood flow in an in vivo microcirculatory model. Biosci Trends. 2007;1(3):161-166.
6. Foulds I, Barker A. Human skin battery potentials and their possible role in wound healing. Br J Dermatol. 1983; 109(5): 515-522.
7. Machado AF, Liebano RE, Helene A, Ferreira LM. Effect of high- and low-frequency transcutaneous electrical nerve stimulation on angiogenesis and myofibroblast proliferation in acute excisional wounds in rat skin. Adv Skin Wound Care. 2016; 29(8): 357-363.
8. Sari Y, Alavi SM, Rahimi M, Ghasemi A, Mohammadi F, et al. A comparative study of the effects of vibration and electrical stimulation therapies on the acceleration of wound healing in diabetic ulcers. J Ners. 2017;12:253-260.
9. Adunsky A, Ohry A. Decubitus direct current treatment (DDCT) of pressure ulcers: results of a randomized double-blinded placebo controlled study. Arch Gerontol Geriatr. 2005;41(3):261-269.
10. Houghton PE, Campbell KE, Fraser CH, Griffin L, Harris C, Keast DH, et al. Electrical stimulation therapy increases rate of healing of pressure ulcers in community-dwelling people with spinal cord injury. Arch Phys Med Rehabil. 2010;91(5):669-678.
11. Szuminsky NJ, Albers AC, Unger P, Eddy J, Harkins D, et al. Effect of narrow, pulsed high voltages on bacterial viability. Phys Ther. 1994;74(7):660-667.
12. Yeganeh H, Ghaffari A, Mehdipour-Ataei S, Mohammadi A, et al. Synthesis, characterization and preliminary investigation of blood compatibility of novel epoxy-modified polyurethane networks. J Bioact Compat Polym. 2008;23(3):276-300.
13. Moghadam AD, Omrani E, Menezes PL, Rohatgi PK, et al. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Compos Part B Eng. 2015;77:402-420.
14. Gautam R, Kumar S, Singh R, Singh H, et al. Dry sliding wear behavior of hot forged and annealed Cu–Cr–graphite in-situ composites. Wear. 2011;271(5-6):658-664.
15. Hernández HH, Cordero IA, Martínez VG, López AL, Pérez JS, Gómez MS, et al. Electrochemical impedance spectroscopy (EIS): a review study of basic aspects of the corrosion mechanism applied to steels. Electrochem Impedance Spectrosc. 2020;12(3):137-144.
16. Patient JD, Smith AB, Johnson CD, Brown EF, Davis GH, Wilson IJ, et al. Nanofibrous scaffolds support a 3D in vitro permeability model of the human intestinal epithelium. Front Pharmacol. 2019; 10:456.
17. Sari Y, Sutrisna E. The effect of short duration of electrical stimulation on wound healing in acute wound in a rat model. Wound Med. 2019;24(1):36-44.
18. Bian J, Wang L, Zhang M, Li Q, Chen Y, Liu H, et al. Bacteria-engineered porous sponge for hemostasis and vascularization. J Nanobiotechnol. 2022;20(1):47.
19. Tu Y, Li X, Zhang Z, Wang H, Liu J, Chen Y, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol. 2013;8(8):594-601.
20. Bahrami S, Solouk A, Mirzadeh H, Seifalian AM. Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Compos Part B Eng. 2019;168:421-431.
21. S Członka, A Strąkowska, K Strzelec, A Kairytė, A Kremensas. Bio-based polyurethane composite foams with improved mechanical, thermal, and antibacterial properties. Mater. 2020;13(5):1108.
22. Hong JH, Lee JH, Kim SH, Park JS, Kim YH, Lee YS, et al. Electrospinning of polyurethane/organically modified montmorillonite nanocomposites. J Polym Sci B Polym Phys. 2005;43(22):3171-3177.
23. Lan M, Zhang Y, Li X, Wang J, Chen H, Liu Q, et al. Hierarchical polyurethane/RGO/BiOI fiber composite as flexible, self-supporting and recyclable photocatalysts for RhB degradation under visible light. J Ind Eng Chem. 2022;108:109-117.
24. Long C, Zhang Y, Li X, Wang J, Chen H, Liu Q, et al. Asymmetric composite wound nanodressing with superhydrophilic/superhydrophobic alternate pattern for reducing blood loss and adhesion. Compos B Eng. 2021;223:109134.
25. Yu B, Zhang Y, Li X, Wang J, Chen H, Liu Q, et al. Asymmetric wettable composite wound dressing prepared by electrospinning with bioinspired micropatterning enhances diabetic wound healing. ACS Appl Bio Mater. 2020;3(8):5383-5394.
26. Collier T, Anderson J. Protein and surface effects on monocyte and macrophage adhesion, maturation, and survival. J Biomed Mater Res. 2002;60(3):487-496.
27. Tang L, Thevenot P, Hu W. Surface chemistry influences implant biocompatibility. Curr Top Med Chem. 2008;8(4):270-280.
28. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599-610.
29. Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219-229.
30. LC Gomes, LN Silva, M Simões, LF Melo, FJ Mergulhão.Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials. J Biomed Mater Res A. 2015;103(4):1414–23.
31. I Miescher, J Rieber, TA Schweizer, M Orlietti, A Tarnutzer, F Andreoni, et al.In vitro assessment of bacterial adhesion and biofilm formation on novel bioactive, biodegradable electrospun fiber meshes intended to support tendon rupture repair. ACS Appl Mater Interfaces. 2024;16(5):6348-6355.
32. Iga C, Ohtsuki C, Fukuda M, Yoshikawa M, Takemura A, Shimizu Y, et al. Polyurethane composite scaffolds modified with the mixture of gelatin and hydroxyapatite characterized by improved calcium deposition. Polymers. 2020;12(2):410.
33. Balaji A, Zhang J. Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol. 2017;8(1):100-115.
34. Thangavel P, Kannan R, Ramachandran B, Moorthy G, Suguna L, Muthuvijayan V, et al. Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. J Colloid Interface Sci. 2018; 517:251-264.
35. Koyyada A, Orsu P. Nanofibrous scaffolds of carboxymethyl guargum potentiated with reduced graphene oxide for in vitro and in vivo wound healing applications. Int J Pharm. 2021;607:121035.

留言 (0)

沒有登入
gif