Hypopituitarism and COVID-19

Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Frara S, Loli P, Allora A et al (2022) COVID-19 and hypopituitarism. Rev Endocr Metab Disord 23:215–231. https://doi.org/10.1007/s11154-021-09672-y

Article  PubMed  CAS  Google Scholar 

Das L, Dutta P, Walia R et al (2021) Spectrum of Endocrine Dysfunction and Association with Disease Severity in patients with COVID-19: insights from a cross-sectional, observational study. Front Endocrinol 12:645787. https://doi.org/10.3389/fendo.2021.645787

Article  Google Scholar 

Ach T, Ben Haj Slama N, Gorchane A et al (2024) Explaining long COVID: a Pioneer Cross-sectional Study supporting the endocrine hypothesis. J Endocr Soc 8:bvae003. https://doi.org/10.1210/jendso/bvae003

Article  PubMed  PubMed Central  CAS  Google Scholar 

Puig-Domingo M, Marazuela M, Yildiz BO, Giustina A (2021) COVID-19 and endocrine and metabolic diseases. An updated statement from the European Society of Endocrinology. Endocrine 72:301–316. https://doi.org/10.1007/s12020-021-02734-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Puig-Domingo M, Marazuela M, Giustina A (2020) COVID-19 and endocrine diseases. A statement from the European Society of Endocrinology. Endocrine 68:2–5. https://doi.org/10.1007/s12020-020-02294-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ding Y, He L, Zhang Q et al (2004) Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 203:622–630. https://doi.org/10.1002/path.1560

Article  PubMed  PubMed Central  CAS  Google Scholar 

Han T, Kang J, Li G et al (2020) Analysis of 2019-nCoV receptor ACE2 expression in different tissues and its significance study. Ann Transl Med 8:1077–1077. https://doi.org/10.21037/atm-20-4281

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fitzek A, Gerling M, Püschel K, Saeger W (2022) Post-mortem histopathology of pituitary and adrenals of COVID-19 patients. Leg Med 57:102045. https://doi.org/10.1016/j.legalmed.2022.102045

Article  CAS  Google Scholar 

Pal R (2020) COVID-19, hypothalamo-pituitary-adrenal axis and clinical implications. Endocrine 68:251–252. https://doi.org/10.1007/s12020-020-02325-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Siejka A, Barabutis N (2021) Adrenal insufficiency in the COVID-19 era. Am J Physiol-Endocrinol Metab 320:E784–E785. https://doi.org/10.1152/ajpendo.00061.2021

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rhea EM, Logsdon AF, Hansen KM et al (2021) The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nat Neurosci 24:368–378. https://doi.org/10.1038/s41593-020-00771-8

Article  PubMed  CAS  Google Scholar 

Gonen MS, De Bellis A, Durcan E et al (2022) Assessment of neuroendocrine changes and hypothalamo-pituitary autoimmunity in patients with COVID-19. Horm Metab Res 54:153–161. https://doi.org/10.1055/a-1764-1260

Article  PubMed  CAS  Google Scholar 

Leow MK, Kwek DS, Ng AW et al (2005) Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf) 63:197–202. https://doi.org/10.1111/j.1365-2265.2005.02325.x

Article  PubMed  Google Scholar 

Pérez-Torres D, Díaz-Rodríguez C, Armentia-Medina A (2022) Anti-ACTH antibodies in critically ill Covid-19 patients: a potential immune evasion mechanism of SARS-CoV-2. Med Intensiva Engl Ed 46:472–474. https://doi.org/10.1016/j.medine.2021.09.001

Article  PubMed  PubMed Central  Google Scholar 

Beuschlein F (2024) European Society of Endocrinology and Endocrine Society Joint Clinical Guideline: diagnosis and therapy of glucocorticoid-induced adrenal insufficiency. J Clin Endocrinol 109

Foisy M, Yakiwchuk E, Chiu I, Singh A (2008) Adrenal suppression and Cushing’s syndrome secondary to an interaction between ritonavir and fluticasone: a review of the literature. HIV Med 9:389–396. https://doi.org/10.1111/j.1468-1293.2008.00579.x

Article  PubMed  CAS  Google Scholar 

Téblick A, Gunst J, Van Den Berghe G (2022) Critical illness–induced corticosteroid insufficiency: what it is not and what it could be. J Clin Endocrinol Metab 107:2057–2064. https://doi.org/10.1210/clinem/dgac201

Article  PubMed  PubMed Central  Google Scholar 

Kumar B, Gopalakrishnan M, Garg M et al (2021) Endocrine dysfunction among patients with COVID-19: a single-center experience from a tertiary hospital in India. Indian J Endocrinol Metab 25:14. https://doi.org/10.4103/ijem.IJEM_577_20

Article  PubMed  PubMed Central  CAS  Google Scholar 

Urhan E, Karaca Z, Unuvar GK et al (2022) Investigation of pituitary functions after acute coronavirus disease 2019. Endocr J 69:649–658. https://doi.org/10.1507/endocrj.EJ21-0531

Article  PubMed  CAS  Google Scholar 

Annane D, Pastores SM, Rochwerg B et al (2017) Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (part I): society of critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Intensive Care Med 43:1751–1763. https://doi.org/10.1007/s00134-017-4919-5

Article  PubMed  Google Scholar 

Fleseriu M, Hashim IA, Karavitaki N et al (2016) Hormonal replacement in hypopituitarism in adults: an endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 101:3888–3921. https://doi.org/10.1210/jc.2016-2118

Article  PubMed  CAS  Google Scholar 

Tan T, Khoo B, Mills EG et al (2020) Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol 8:659–660. https://doi.org/10.1016/S2213-8587(20)30216-3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chua MWJ, Chua MPW (2021) Delayed onset of Central Hypocortisolism in a patient recovering from COVID-19. AACE Clin Case Rep 7:2–5. https://doi.org/10.1016/j.aace.2020.11.001

Article  PubMed  Google Scholar 

Hamazaki K, Nishigaki T, Kuramoto N et al (2022) Secondary adrenal insufficiency after COVID-19 diagnosed by insulin tolerance test and corticotropin-releasing hormone test. https://doi.org/10.7759/cureus.23021. Cureus

Yoshimura K, Yamamoto M, Inoue T et al (2022) Coexistence of growth hormone, adrenocorticotropic hormone, and testosterone deficiency associated with coronavirus disease 2019: a case followed up for 15 months. Endocr J 69:1335–1342. https://doi.org/10.1507/endocrj.EJ22-0108

Article  PubMed  CAS  Google Scholar 

Salonia A, Pontillo M, Capogrosso P et al (2021) Severely low testosterone in males with COVID-19: a case‐control study. Andrology 9:1043–1052. https://doi.org/10.1111/andr.12993

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kumar M, Dutta D, Anne B et al (2014) Testosterone levels and type 2 diabetes in men: current knowledge and clinical implications. Diabetes Metab Syndr Obes Targets Ther 481. https://doi.org/10.2147/DMSO.S50777

Dhindsa S, Zhang N, McPhaul MJ et al (2021) Association of Circulating Sex Hormones with Inflammation and disease severity in patients with COVID-19. JAMA Netw Open 4:e2111398. https://doi.org/10.1001/jamanetworkopen.2021.11398

Article  PubMed  PubMed Central  Google Scholar 

Apaydin T, Sahin B, Dashdamirova S et al (2022) The association of free testosterone levels with coronavirus disease 2019. Andrology 10:1038–1046. https://doi.org/10.1111/andr.13152

Article 

留言 (0)

沒有登入
gif