cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics

Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. Melanoma Management: from epidemiology to treatment and latest advances. Cancers (Basel). 2022;14. https://doi.org/10.3390/cancers14194652.

Naik PP. Cutaneous malignant melanoma: a review of early diagnosis and management. World J Oncol. 2021;12:7.

Article  PubMed  PubMed Central  Google Scholar 

Jenkins RW, Fisher DE. Treatment of advanced melanoma in 2020 and beyond. J Invest Dermatol. 2021;141:23–31.

Article  PubMed  Google Scholar 

Sun L, Arbesman J. Canonical signaling pathways in melanoma. Clin Plast Surg. 2021;48:551–60.

Article  PubMed  Google Scholar 

Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy. Signal Transduct Target Ther. 2021;6:424.

Article  PubMed  PubMed Central  Google Scholar 

Ebrahimnezhad M, Valizadeh A, Majidinia M, Tabnak P, Yousefi B. Unveiling the potential of FOXO3 in lung cancer: from molecular insights to therapeutic prospects. Biomed Pharmacother. 2024;176:116833. https://doi.org/10.1016/j.biopha.2024.116833.

Article  PubMed  Google Scholar 

Gan Y, Li X, Han S, Liang Q, Ma X, Rong P, et al. The cGAS/STING pathway: a novel target for cancer therapy. Front Immunol. 2022;12:795401.

Article  PubMed  PubMed Central  Google Scholar 

Chen L, He Y, Zhu J, Zhao S, Qi S, Chen X, et al. The roles and mechanism of m(6)a RNA methylation regulators in cancer immunity. Biomed Pharmacother. 2023;163:114839. https://doi.org/10.1016/j.biopha.2023.114839.

Article  PubMed  Google Scholar 

Huang C, Li W, Ren X, Tang M, Zhang K, Zhuo F, et al. The crucial roles and research advances of cGAS-STING pathway in Cutaneous disorders. Inflammation. 2023;46:1161–76. https://doi.org/10.1007/s10753-023-01812-7.

Article  PubMed  Google Scholar 

Huang M, Cha Z, Liu R, Lin M, Gafoor NA, Kong T, et al. Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies. Front Immunol. 2024;15:1399926.

Article  PubMed  PubMed Central  Google Scholar 

Pan J, Fei C-J, Hu Y, Wu X-Y, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: structure, regulatory mechanisms, and related diseases. Zool Res. 2023;44:183.

Article  PubMed  PubMed Central  Google Scholar 

Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21:548–69.

Article  PubMed  PubMed Central  Google Scholar 

Ou L, Zhang A, Cheng Y, Chen Y. The cGAS-STING pathway: a promising immunotherapy target. Front Immunol. 2021;12:795048.

Article  PubMed  PubMed Central  Google Scholar 

Falahat R, Perez-Villarroel P, Mailloux AW, Zhu G, Pilon-Thomas S, Barber GN, et al. STING signaling in melanoma cells shapes antigenicity and can promote antitumor T-cell activity. Cancer Immunol Res. 2019;7:1837–48.

Article  PubMed  PubMed Central  Google Scholar 

Falahat R, Berglund A, Putney RM, Perez-Villarroel P, Aoyama S, Pilon-Thomas S, et al. Epigenetic reprogramming of tumor cell–intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. Proc Natl Acad Sci. 2021;118:e2013598118.

Article  PubMed  PubMed Central  Google Scholar 

Ma M, Ghosh S, Tavernari D, Katarkar A, Clocchiatti A, Mazzeo L, et al. Sustained androgen receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. J Exp Med. 2020;218:e20201137.

Article  PubMed Central  Google Scholar 

Occhigrossi L, D’Eletto M, Vecchio A, Piacentini M, Rossin F. Transglutaminase type 2-dependent crosslinking of IRF3 in dying melanoma cells. Cell Death Discov. 2022;8:498. https://doi.org/10.1038/s41420-022-01278-w.

Article  PubMed  PubMed Central  Google Scholar 

Pinjusic K, Ambrosini G, Lourenco J, Fournier N, Iseli C, Guex N et al. Inhibition of anti-tumor immunity by melanoma cell-derived Activin-A depends on STING. Front Immunol 2024;14.

Ma Z, Xiong Q, Cai S, Ding L, Yin C, Xia H, et al. USP18 enhances the resistance of BRAF-mutated melanoma cells to vemurafenib by stabilizing cGAS expression to induce cell autophagy. Int Immunopharmacol. 2023;122:110617. https://doi.org/10.1016/j.intimp.2023.110617.

Article  PubMed  Google Scholar 

Kong L, Sui C, Chen T, Zhang L, Zhao W, Zheng Y et al. The ubiquitin E3 ligase TRIM10 promotes STING aggregation and activation in the golgi apparatus. Cell Rep 2023;42.

Guo Y, Jiang F, Kong L, Wu H, Zhang H, Chen X, et al. OTUD5 promotes innate antiviral and antitumor immunity through deubiquitinating and stabilizing STING. Cell Mol Immunol. 2021;18:1945–55. https://doi.org/10.1038/s41423-020-00531-5.

Article  PubMed  Google Scholar 

Liu H, Yan Z, Zhu D, Xu H, Liu F, Chen T, et al. CD-NTase family member MB21D2 promotes cGAS-mediated antiviral and antitumor immunity. Cell Death Differ. 2023;30:992–1004. https://doi.org/10.1038/s41418-023-01116-1.

Article  PubMed  PubMed Central  Google Scholar 

Bayer AL, Pietruska J, Farrell J, McRee S, Alcaide P, Hinds PW. AKT1 is required for a complete Palbociclib-Induced Senescence phenotype in BRAF-V600E-Driven Human Melanoma. Cancers (Basel). 2022;14. https://doi.org/10.3390/cancers14030572.

Jeong S, Yang MJ, Choi S, Kim J, Koh GY. Refractoriness of STING therapy is relieved by AKT inhibitor through effective vascular disruption in tumour. Nat Commun. 2021;12:4405. https://doi.org/10.1038/s41467-021-24603-w.

Article  PubMed  PubMed Central  Google Scholar 

Yamada S, Kitai Y, Tadokoro T, Takahashi R, Shoji H, Maemoto T, et al. Identification of RPL15 60S ribosomal protein as a Novel Topotecan target protein that correlates with DAMP Secretion and Antitumor Immune activation. J Immunol. 2022;209:171–9. https://doi.org/10.4049/jimmunol.2100963.

Article  PubMed  Google Scholar 

Verhoeven J, Jacobs KA, Rizzollo F, Lodi F, Hua Y, Poźniak J, et al. Tumor endothelial cell autophagy is a key vascular-immune checkpoint in melanoma. EMBO Mol Med. 2023;15:e18028.

Article  PubMed  PubMed Central  Google Scholar 

Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J, Flatz L, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci. 2015;112:15408–13. https://doi.org/10.1073/pnas.1512832112.

Article  PubMed  PubMed Central  Google Scholar 

Ma Z, Xiong Q, Xia H, Liu W, Dai S, Cai S, et al. Carboplatin activates the cGAS-STING pathway by upregulating the TREX-1 (three prime repair exonuclease 1) expression in human melanoma. Bioengineered. 2021;12:6448–58. https://doi.org/10.1080/21655979.2021.1972198.

Article  PubMed  PubMed Central  Google Scholar 

Meng F, Yu Z, Zhang D, Chen S, Guan H, Zhou R, et al. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell. 2021;81:4147–64.

Article  PubMed  Google Scholar 

Fukuda K, Okamura K, Riding RL, Fan X, Afshari K, Haddadi N-S, et al. AIM2 regulates anti-tumor immunity and is a viable therapeutic target for melanoma. J Exp Med. 2021;218:e20200962. https://doi.org/10.1084/jem.20200962.

Article  PubMed  PubMed Central  Google Scholar 

Lee J-J, Park IH, Kwak MS, Rhee WJ, Kim SH, Shin J-S. HMGB1 orchestrates STING-mediated senescence via TRIM30α modulation in cancer cells. Cell Death Discov. 2021;7:28. https://doi.org/10.1038/s41420-021-00409-z.

Article  PubMed  PubMed Central  Google Scholar 

Santana Carrero RM, Beceren-Braun F, Rivas SC, Hegde SM, Gangadharan A, Plote D, et al. IL-15 is a component of the inflammatory milieu in the tumor microenvironment promoting antitumor responses. Proc Natl Acad Sci. 2019;116:599–608.

Article  PubMed  Google Scholar 

Xu T, Dai J, Tang L, Yang L, Si L, Sheng X, et al. EZH2 inhibitor enhances the STING agonist–induced antitumor immunity in melanoma. J Invest Dermatol. 2022;142:1158–70.

Article  PubMed  Google Scholar 

Falahat R, Berglund A, Perez-Villarroel P, Putney RM, Hamaidi I, Kim S, et al. Epigenetic state determines the in vivo efficacy of STING agonist therapy. Nat Commun. 2023;14:1573. https://doi.org/10.1038/s41467-023-37217-1.

Article  PubMed 

留言 (0)

沒有登入
gif