Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. Melanoma Management: from epidemiology to treatment and latest advances. Cancers (Basel). 2022;14. https://doi.org/10.3390/cancers14194652.
Naik PP. Cutaneous malignant melanoma: a review of early diagnosis and management. World J Oncol. 2021;12:7.
Article PubMed PubMed Central Google Scholar
Jenkins RW, Fisher DE. Treatment of advanced melanoma in 2020 and beyond. J Invest Dermatol. 2021;141:23–31.
Sun L, Arbesman J. Canonical signaling pathways in melanoma. Clin Plast Surg. 2021;48:551–60.
Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy. Signal Transduct Target Ther. 2021;6:424.
Article PubMed PubMed Central Google Scholar
Ebrahimnezhad M, Valizadeh A, Majidinia M, Tabnak P, Yousefi B. Unveiling the potential of FOXO3 in lung cancer: from molecular insights to therapeutic prospects. Biomed Pharmacother. 2024;176:116833. https://doi.org/10.1016/j.biopha.2024.116833.
Gan Y, Li X, Han S, Liang Q, Ma X, Rong P, et al. The cGAS/STING pathway: a novel target for cancer therapy. Front Immunol. 2022;12:795401.
Article PubMed PubMed Central Google Scholar
Chen L, He Y, Zhu J, Zhao S, Qi S, Chen X, et al. The roles and mechanism of m(6)a RNA methylation regulators in cancer immunity. Biomed Pharmacother. 2023;163:114839. https://doi.org/10.1016/j.biopha.2023.114839.
Huang C, Li W, Ren X, Tang M, Zhang K, Zhuo F, et al. The crucial roles and research advances of cGAS-STING pathway in Cutaneous disorders. Inflammation. 2023;46:1161–76. https://doi.org/10.1007/s10753-023-01812-7.
Huang M, Cha Z, Liu R, Lin M, Gafoor NA, Kong T, et al. Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies. Front Immunol. 2024;15:1399926.
Article PubMed PubMed Central Google Scholar
Pan J, Fei C-J, Hu Y, Wu X-Y, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: structure, regulatory mechanisms, and related diseases. Zool Res. 2023;44:183.
Article PubMed PubMed Central Google Scholar
Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21:548–69.
Article PubMed PubMed Central Google Scholar
Ou L, Zhang A, Cheng Y, Chen Y. The cGAS-STING pathway: a promising immunotherapy target. Front Immunol. 2021;12:795048.
Article PubMed PubMed Central Google Scholar
Falahat R, Perez-Villarroel P, Mailloux AW, Zhu G, Pilon-Thomas S, Barber GN, et al. STING signaling in melanoma cells shapes antigenicity and can promote antitumor T-cell activity. Cancer Immunol Res. 2019;7:1837–48.
Article PubMed PubMed Central Google Scholar
Falahat R, Berglund A, Putney RM, Perez-Villarroel P, Aoyama S, Pilon-Thomas S, et al. Epigenetic reprogramming of tumor cell–intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. Proc Natl Acad Sci. 2021;118:e2013598118.
Article PubMed PubMed Central Google Scholar
Ma M, Ghosh S, Tavernari D, Katarkar A, Clocchiatti A, Mazzeo L, et al. Sustained androgen receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. J Exp Med. 2020;218:e20201137.
Article PubMed Central Google Scholar
Occhigrossi L, D’Eletto M, Vecchio A, Piacentini M, Rossin F. Transglutaminase type 2-dependent crosslinking of IRF3 in dying melanoma cells. Cell Death Discov. 2022;8:498. https://doi.org/10.1038/s41420-022-01278-w.
Article PubMed PubMed Central Google Scholar
Pinjusic K, Ambrosini G, Lourenco J, Fournier N, Iseli C, Guex N et al. Inhibition of anti-tumor immunity by melanoma cell-derived Activin-A depends on STING. Front Immunol 2024;14.
Ma Z, Xiong Q, Cai S, Ding L, Yin C, Xia H, et al. USP18 enhances the resistance of BRAF-mutated melanoma cells to vemurafenib by stabilizing cGAS expression to induce cell autophagy. Int Immunopharmacol. 2023;122:110617. https://doi.org/10.1016/j.intimp.2023.110617.
Kong L, Sui C, Chen T, Zhang L, Zhao W, Zheng Y et al. The ubiquitin E3 ligase TRIM10 promotes STING aggregation and activation in the golgi apparatus. Cell Rep 2023;42.
Guo Y, Jiang F, Kong L, Wu H, Zhang H, Chen X, et al. OTUD5 promotes innate antiviral and antitumor immunity through deubiquitinating and stabilizing STING. Cell Mol Immunol. 2021;18:1945–55. https://doi.org/10.1038/s41423-020-00531-5.
Liu H, Yan Z, Zhu D, Xu H, Liu F, Chen T, et al. CD-NTase family member MB21D2 promotes cGAS-mediated antiviral and antitumor immunity. Cell Death Differ. 2023;30:992–1004. https://doi.org/10.1038/s41418-023-01116-1.
Article PubMed PubMed Central Google Scholar
Bayer AL, Pietruska J, Farrell J, McRee S, Alcaide P, Hinds PW. AKT1 is required for a complete Palbociclib-Induced Senescence phenotype in BRAF-V600E-Driven Human Melanoma. Cancers (Basel). 2022;14. https://doi.org/10.3390/cancers14030572.
Jeong S, Yang MJ, Choi S, Kim J, Koh GY. Refractoriness of STING therapy is relieved by AKT inhibitor through effective vascular disruption in tumour. Nat Commun. 2021;12:4405. https://doi.org/10.1038/s41467-021-24603-w.
Article PubMed PubMed Central Google Scholar
Yamada S, Kitai Y, Tadokoro T, Takahashi R, Shoji H, Maemoto T, et al. Identification of RPL15 60S ribosomal protein as a Novel Topotecan target protein that correlates with DAMP Secretion and Antitumor Immune activation. J Immunol. 2022;209:171–9. https://doi.org/10.4049/jimmunol.2100963.
Verhoeven J, Jacobs KA, Rizzollo F, Lodi F, Hua Y, Poźniak J, et al. Tumor endothelial cell autophagy is a key vascular-immune checkpoint in melanoma. EMBO Mol Med. 2023;15:e18028.
Article PubMed PubMed Central Google Scholar
Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J, Flatz L, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci. 2015;112:15408–13. https://doi.org/10.1073/pnas.1512832112.
Article PubMed PubMed Central Google Scholar
Ma Z, Xiong Q, Xia H, Liu W, Dai S, Cai S, et al. Carboplatin activates the cGAS-STING pathway by upregulating the TREX-1 (three prime repair exonuclease 1) expression in human melanoma. Bioengineered. 2021;12:6448–58. https://doi.org/10.1080/21655979.2021.1972198.
Article PubMed PubMed Central Google Scholar
Meng F, Yu Z, Zhang D, Chen S, Guan H, Zhou R, et al. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell. 2021;81:4147–64.
Fukuda K, Okamura K, Riding RL, Fan X, Afshari K, Haddadi N-S, et al. AIM2 regulates anti-tumor immunity and is a viable therapeutic target for melanoma. J Exp Med. 2021;218:e20200962. https://doi.org/10.1084/jem.20200962.
Article PubMed PubMed Central Google Scholar
Lee J-J, Park IH, Kwak MS, Rhee WJ, Kim SH, Shin J-S. HMGB1 orchestrates STING-mediated senescence via TRIM30α modulation in cancer cells. Cell Death Discov. 2021;7:28. https://doi.org/10.1038/s41420-021-00409-z.
Article PubMed PubMed Central Google Scholar
Santana Carrero RM, Beceren-Braun F, Rivas SC, Hegde SM, Gangadharan A, Plote D, et al. IL-15 is a component of the inflammatory milieu in the tumor microenvironment promoting antitumor responses. Proc Natl Acad Sci. 2019;116:599–608.
Xu T, Dai J, Tang L, Yang L, Si L, Sheng X, et al. EZH2 inhibitor enhances the STING agonist–induced antitumor immunity in melanoma. J Invest Dermatol. 2022;142:1158–70.
Falahat R, Berglund A, Perez-Villarroel P, Putney RM, Hamaidi I, Kim S, et al. Epigenetic state determines the in vivo efficacy of STING agonist therapy. Nat Commun. 2023;14:1573. https://doi.org/10.1038/s41467-023-37217-1.
留言 (0)