The mediatory role of androgens on sex differences in glucose homeostasis and incidence of type 2 diabetes: the KORA study

Ogurtsova K, da Rocha Fernandes J, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw J, Makaroff L. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.

Article  CAS  PubMed  Google Scholar 

Kautzky-Willer A, Leutner M, Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 2023;66(6):986–1002.

Article  PubMed  PubMed Central  Google Scholar 

Harreiter J, Fadl H, Kautzky-Willer A, Simmons D. Do women with diabetes need more intensive action for cardiovascular reduction than men with diabetes? Curr Diab Rep. 2020;20(11):61.

Article  PubMed  PubMed Central  Google Scholar 

Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016;37(3):278–316.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnold AP, Cassis LA, Eghbali M, Reue K, Sandberg K. Sex hormones and sex chromosomes cause sex differences in the development of cardiovascular diseases. Arterioscler Thromb Vasc Biol. 2017;37(5):746–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raeisi-Dehkordi H, Amiri M, Rathmann W, Zeller T, Adamski J, Bano A, van der Schouw YT, Thorand B, Muka T, Nano J. Sex hormone-binding globulin may explain sex differences for glucose homeostasis and incidence of type 2 diabetes: the KORA study. Eur J Epidemiol 2024:1–10.

Haffner S. Sex hormones, obesity, fat distribution, type 2 diabetes and insulin resistance: epidemiological and clinical correlation. Int J Obes. 2000;24(2):S56–8.

Article  CAS  Google Scholar 

Oh J-Y, Barrett-Connor E, Wedick NM, Wingard DL. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study. Diabetes Care. 2002;25(1):55–60.

Article  CAS  PubMed  Google Scholar 

Gambineri A, Pelusi C, Manicardi E, Vicennati V, Cacciari M, Morselli-Labate AM, Pagotto U, Pasquali R. Glucose intolerance in a large cohort of mediterranean women with polycystic ovary syndrome: phenotype and associated factors. Diabetes. 2004;53(9):2353–8.

Article  CAS  PubMed  Google Scholar 

Tsai EC, Matsumoto AM, Fujimoto WY, Boyko EJ. Association of bioavailable, free, and total testosterone with insulin resistance: influence of sex hormone-binding globulin and body fat. Diabetes Care. 2004;27(4):861–8.

Article  CAS  PubMed  Google Scholar 

Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295(11):1288–99.

Article  CAS  PubMed  Google Scholar 

Yuan S, Wang L, Sun J, Yu L, Zhou X, Yang J, Zhu Y, Gill D, Burgess S, Denny JC. Genetically predicted sex hormone levels and health outcomes: phenome-wide mendelian randomization investigation. Int J Epidemiol. 2022;51(6):1931–42.

Article  PubMed  PubMed Central  Google Scholar 

Loh NY, Humphreys E, Karpe F, Tomlinson JW, Noordam R, Christodoulides C. Sex hormones, adiposity, and metabolic traits in men and women: a mendelian randomisation study. Eur J Endocrinol. 2022;186(3):407–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wittert G, Bracken K, Robledo KP, Grossmann M, Yeap BB, Handelsman DJ, Stuckey B, Conway A, Inder W, McLachlan R. Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): a randomised, double-blind, placebo-controlled, 2-year, phase 3b trial. Lancet Diabetes Endocrinol. 2021;9(1):32–45.

Article  CAS  PubMed  Google Scholar 

Bhasin S, Lincoff AM, Nissen SE, Wannemuehler K, McDonnell ME, Peters AL, Khan N, Snabes MC, Li X, Li G. Effect of testosterone on progression from Prediabetes to diabetes in men with hypogonadism: a Substudy of the TRAVERSE randomized clinical trial. JAMA Intern Med. 2024;184(4):353–62.

Article  CAS  PubMed  Google Scholar 

Veronese N, Trevisan C, De Rui M, Bolzetta F, Maggi S, Zambon S, Corti MC, Baggio G, Perissinotto E, Crepaldi G. Serum dehydroepiandrosterone sulfate and risk for type 2 diabetes in older men and women: the pro. VA Study. Can J Diabetes. 2016;40(2):158–63.

Article  PubMed  Google Scholar 

Ding E, Song Y, Manson J, Rifai N, Buring J, Liu S. Plasma sex steroid hormones and risk of developing type 2 diabetes in women: a prospective study. Diabetologia. 2007;50:2076–84.

Article  CAS  PubMed  Google Scholar 

Ravaglia G, Forti P, Maioli F, Sacchetti L, Nativio V, Scali CR, Mariani E, Zanardi V, Stefanini A, Macini PL. Dehydroepiandrosterone-sulfate serum levels and common age-related diseases: results from a cross-sectional Italian study of a general elderly population. Exp Gerontol. 2002;37(5):701–12.

Article  CAS  PubMed  Google Scholar 

Kameda W, Daimon M, Oizumi T, Jimbu Y, Kimura M, Hirata A, Yamaguchi H, Ohnuma H, Igarashi M, Tominaga M. Association of decrease in serum dehydroepiandrosterone sulfate levels with the progression to type 2 diabetes in men of a Japanese population: the Fungata Study. Metabolism. 2005;54(5):669–76.

Article  CAS  PubMed  Google Scholar 

Brahimaj A, Muka T, Kavousi M, Laven JS, Dehghan A, Franco OH. Serum dehydroepiandrosterone levels are associated with lower risk of type 2 diabetes: the Rotterdam Study. Diabetologia. 2017;60(1):98–106.

Article  CAS  PubMed  Google Scholar 

Laxy M, Knoll G, Schunk M, Meisinger C, Huth C, Holle R. Quality of diabetes care in Germany improved from 2000 to 2007 to 2014, but improvements diminished since 2007. Evidence from the population-based KORA studies. PLoS ONE. 2016;11(10):e0164704.

Article  PubMed  PubMed Central  Google Scholar 

Breier M, Wahl S, Prehn C, Ferrari U, Sacco V, Weise M, Grallert H, Adamski J, Lechner A. Immediate reduction of serum citrulline but no change of steroid profile after initiation of metformin in individuals with type 2 diabetes. J Steroid Biochem Mol Biol. 2017;174:114–9.

Article  CAS  PubMed  Google Scholar 

AbsoluteIDQ Stero17 Kit. Increased Confidence in Steroid Hormone Analysis. https://www.biocrates.com/products/research-products/absoluteidq-stero17-kit.

Lau LHY, Nano J, Cecil A, Schederecker F, Rathmann W, Prehn C, Zeller T, Lechner A, Adamski J, Peters A et al. Cross-sectional and prospective relationships of endogenous progestogens and estrogens with glucose metabolism in men and women: a KORA F4/FF4 study. BMJ Open Diabetes Res Care 2021;9(1).

Connelly PJ, Azizi Z, Alipour P, Delles C, Pilote L, Raparelli V. The importance of gender to understand sex differences in cardiovascular disease. Can J Cardiol. 2021;37(5):699–710.

Article  PubMed  Google Scholar 

Waldron I. Patterns and causes of gender differences in smoking. Soc Sci Med. 1991;32(9):989–1005.

Article  CAS  PubMed  Google Scholar 

Ho CK, Stoddart M, Walton M, Anderson RA, Beckett GJ. Calculated free testosterone in men: comparison of four equations and with free androgen index. Ann Clin Biochem. 2006;43(Pt 5):389–97.

Article  CAS  PubMed  Google Scholar 

Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metabolism. 1999;84(10):3666–72.

Article  CAS  Google Scholar 

Valeri L, VanderWeele TJ. Mediation analysis allowing for exposure–mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18(2):137.

Article  PubMed  PubMed Central  Google Scholar 

VanderWeele TJ. Mediation analysis: a practitioner’s guide. Annu Rev Public Health. 2016;37:17–32.

Article  PubMed  Google Scholar 

VanderWeele T. Explanation in causal inference: methods for mediation and interaction. Oxford University Press; 2015.

VanderWeele TJ. Principles of confounder selection. Eur J Epidemiol. 2019;34:211–9.

Article  PubMed  PubMed Central  Google Scholar 

Shi B, Choirat C, Coull BA, VanderWeele TJ, Valeri L. CMAverse: a suite of functions for reproducible causal mediation analyses. Epidemiology. 2021;32(5):e20–2.

Article  PubMed 

留言 (0)

沒有登入
gif