Ogurtsova K, da Rocha Fernandes J, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw J, Makaroff L. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.
Article CAS PubMed Google Scholar
Kautzky-Willer A, Leutner M, Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 2023;66(6):986–1002.
Article PubMed PubMed Central Google Scholar
Harreiter J, Fadl H, Kautzky-Willer A, Simmons D. Do women with diabetes need more intensive action for cardiovascular reduction than men with diabetes? Curr Diab Rep. 2020;20(11):61.
Article PubMed PubMed Central Google Scholar
Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016;37(3):278–316.
Article CAS PubMed PubMed Central Google Scholar
Arnold AP, Cassis LA, Eghbali M, Reue K, Sandberg K. Sex hormones and sex chromosomes cause sex differences in the development of cardiovascular diseases. Arterioscler Thromb Vasc Biol. 2017;37(5):746–56.
Article CAS PubMed PubMed Central Google Scholar
Raeisi-Dehkordi H, Amiri M, Rathmann W, Zeller T, Adamski J, Bano A, van der Schouw YT, Thorand B, Muka T, Nano J. Sex hormone-binding globulin may explain sex differences for glucose homeostasis and incidence of type 2 diabetes: the KORA study. Eur J Epidemiol 2024:1–10.
Haffner S. Sex hormones, obesity, fat distribution, type 2 diabetes and insulin resistance: epidemiological and clinical correlation. Int J Obes. 2000;24(2):S56–8.
Oh J-Y, Barrett-Connor E, Wedick NM, Wingard DL. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study. Diabetes Care. 2002;25(1):55–60.
Article CAS PubMed Google Scholar
Gambineri A, Pelusi C, Manicardi E, Vicennati V, Cacciari M, Morselli-Labate AM, Pagotto U, Pasquali R. Glucose intolerance in a large cohort of mediterranean women with polycystic ovary syndrome: phenotype and associated factors. Diabetes. 2004;53(9):2353–8.
Article CAS PubMed Google Scholar
Tsai EC, Matsumoto AM, Fujimoto WY, Boyko EJ. Association of bioavailable, free, and total testosterone with insulin resistance: influence of sex hormone-binding globulin and body fat. Diabetes Care. 2004;27(4):861–8.
Article CAS PubMed Google Scholar
Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295(11):1288–99.
Article CAS PubMed Google Scholar
Yuan S, Wang L, Sun J, Yu L, Zhou X, Yang J, Zhu Y, Gill D, Burgess S, Denny JC. Genetically predicted sex hormone levels and health outcomes: phenome-wide mendelian randomization investigation. Int J Epidemiol. 2022;51(6):1931–42.
Article PubMed PubMed Central Google Scholar
Loh NY, Humphreys E, Karpe F, Tomlinson JW, Noordam R, Christodoulides C. Sex hormones, adiposity, and metabolic traits in men and women: a mendelian randomisation study. Eur J Endocrinol. 2022;186(3):407–16.
Article CAS PubMed PubMed Central Google Scholar
Wittert G, Bracken K, Robledo KP, Grossmann M, Yeap BB, Handelsman DJ, Stuckey B, Conway A, Inder W, McLachlan R. Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): a randomised, double-blind, placebo-controlled, 2-year, phase 3b trial. Lancet Diabetes Endocrinol. 2021;9(1):32–45.
Article CAS PubMed Google Scholar
Bhasin S, Lincoff AM, Nissen SE, Wannemuehler K, McDonnell ME, Peters AL, Khan N, Snabes MC, Li X, Li G. Effect of testosterone on progression from Prediabetes to diabetes in men with hypogonadism: a Substudy of the TRAVERSE randomized clinical trial. JAMA Intern Med. 2024;184(4):353–62.
Article CAS PubMed Google Scholar
Veronese N, Trevisan C, De Rui M, Bolzetta F, Maggi S, Zambon S, Corti MC, Baggio G, Perissinotto E, Crepaldi G. Serum dehydroepiandrosterone sulfate and risk for type 2 diabetes in older men and women: the pro. VA Study. Can J Diabetes. 2016;40(2):158–63.
Ding E, Song Y, Manson J, Rifai N, Buring J, Liu S. Plasma sex steroid hormones and risk of developing type 2 diabetes in women: a prospective study. Diabetologia. 2007;50:2076–84.
Article CAS PubMed Google Scholar
Ravaglia G, Forti P, Maioli F, Sacchetti L, Nativio V, Scali CR, Mariani E, Zanardi V, Stefanini A, Macini PL. Dehydroepiandrosterone-sulfate serum levels and common age-related diseases: results from a cross-sectional Italian study of a general elderly population. Exp Gerontol. 2002;37(5):701–12.
Article CAS PubMed Google Scholar
Kameda W, Daimon M, Oizumi T, Jimbu Y, Kimura M, Hirata A, Yamaguchi H, Ohnuma H, Igarashi M, Tominaga M. Association of decrease in serum dehydroepiandrosterone sulfate levels with the progression to type 2 diabetes in men of a Japanese population: the Fungata Study. Metabolism. 2005;54(5):669–76.
Article CAS PubMed Google Scholar
Brahimaj A, Muka T, Kavousi M, Laven JS, Dehghan A, Franco OH. Serum dehydroepiandrosterone levels are associated with lower risk of type 2 diabetes: the Rotterdam Study. Diabetologia. 2017;60(1):98–106.
Article CAS PubMed Google Scholar
Laxy M, Knoll G, Schunk M, Meisinger C, Huth C, Holle R. Quality of diabetes care in Germany improved from 2000 to 2007 to 2014, but improvements diminished since 2007. Evidence from the population-based KORA studies. PLoS ONE. 2016;11(10):e0164704.
Article PubMed PubMed Central Google Scholar
Breier M, Wahl S, Prehn C, Ferrari U, Sacco V, Weise M, Grallert H, Adamski J, Lechner A. Immediate reduction of serum citrulline but no change of steroid profile after initiation of metformin in individuals with type 2 diabetes. J Steroid Biochem Mol Biol. 2017;174:114–9.
Article CAS PubMed Google Scholar
AbsoluteIDQ Stero17 Kit. Increased Confidence in Steroid Hormone Analysis. https://www.biocrates.com/products/research-products/absoluteidq-stero17-kit.
Lau LHY, Nano J, Cecil A, Schederecker F, Rathmann W, Prehn C, Zeller T, Lechner A, Adamski J, Peters A et al. Cross-sectional and prospective relationships of endogenous progestogens and estrogens with glucose metabolism in men and women: a KORA F4/FF4 study. BMJ Open Diabetes Res Care 2021;9(1).
Connelly PJ, Azizi Z, Alipour P, Delles C, Pilote L, Raparelli V. The importance of gender to understand sex differences in cardiovascular disease. Can J Cardiol. 2021;37(5):699–710.
Waldron I. Patterns and causes of gender differences in smoking. Soc Sci Med. 1991;32(9):989–1005.
Article CAS PubMed Google Scholar
Ho CK, Stoddart M, Walton M, Anderson RA, Beckett GJ. Calculated free testosterone in men: comparison of four equations and with free androgen index. Ann Clin Biochem. 2006;43(Pt 5):389–97.
Article CAS PubMed Google Scholar
Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metabolism. 1999;84(10):3666–72.
Valeri L, VanderWeele TJ. Mediation analysis allowing for exposure–mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18(2):137.
Article PubMed PubMed Central Google Scholar
VanderWeele TJ. Mediation analysis: a practitioner’s guide. Annu Rev Public Health. 2016;37:17–32.
VanderWeele T. Explanation in causal inference: methods for mediation and interaction. Oxford University Press; 2015.
VanderWeele TJ. Principles of confounder selection. Eur J Epidemiol. 2019;34:211–9.
Article PubMed PubMed Central Google Scholar
Shi B, Choirat C, Coull BA, VanderWeele TJ, Valeri L. CMAverse: a suite of functions for reproducible causal mediation analyses. Epidemiology. 2021;32(5):e20–2.
留言 (0)