Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective study

Wang H, Chai K,Du M, Wang S, et al. Prevalence and incidence of heart failure among urban patients in China: A National Population-based analysis. Circ Heart Fail. 2021;14(10):e008406. https://doi.org/10.1161/circheartfailure.121.008406.

Article  PubMed  Google Scholar 

Wei S, Miranda JJ,Mamas MA,Zühlke LJ,Kontopantelis E,Thabane L, et al. Sex differences in the etiology and burden of heart failure across country income level: analysis of 204 countries and territories 1990–2019. Eur Heart J Qual Care Clin Outcomes. 2023;9(7):662–72. https://doi.org/10.1093/ehjqcco/qcac088.

Article  PubMed  Google Scholar 

Lawson C, Crothers H, Remsing S, Squire I,Zaccardi F,Davies M, et al. Trends in 30-day readmissions following hospitalisation for heart failure by sex, socioeconomic status and ethnicity. EClinicalMedicine. 2021;38:101008. https://doi.org/10.1016/j.eclinm.2021.101008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Groenewegen A, Rutten FH,Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342–56. https://doi.org/10.1002/ejhf.1858.

Article  PubMed  Google Scholar 

Burnier M, Polychronopoulou E, Wuerzner G. Hypertension and drug adherence in the Elderly. Front Cardiovasc Med. 2020;7:49. https://doi.org/10.3389/fcvm.2020.00049.

Article  PubMed  PubMed Central  Google Scholar 

Lloyd-Jones DM, Evans JC, Levy D. Hypertension in adults across the age spectrum: current outcomes and control in the community. JAMA. 2005;294(4):466–72. https://doi.org/10.1001/jama.294.4.466.

Article  CAS  PubMed  Google Scholar 

Connelly PJ, Currie G, Delles C. Sex differences in the prevalence, outcomes and management of hypertension. Curr Hypertens Rep. 2022;24(6):185–92. https://doi.org/10.1007/s11906-022-01183-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Virani SS, Alonso A, Benjamin EJ,Bittencourt MS,Callaway CW,Carson AP, et al. Heart Disease and Stroke Statistics-2020 update: a Report from the American Heart Association. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/cir.0000000000000757.

Article  PubMed  Google Scholar 

Egan BM, Mattix-Kramer HJ, Basile JN, Sutherland SE. Managing hypertension in older adults. Curr Hypertens Rep. 2024;26(4):157–67. https://doi.org/10.1007/s11906-023-01289-7.

Article  CAS  PubMed  Google Scholar 

Ji H, Kim A, Ebinger JE,Niiranen TJ, Claggett BL, Bairey Merz CN, et al. Sex differences in blood pressure trajectories over the life course. JAMA Cardiol. 2020;5(3):19–26. https://doi.org/10.1001/jamacardio.2019.5306.

Article  PubMed  PubMed Central  Google Scholar 

Franklin SS, Jacobs MJ, Wong ND,L’italien GJ, Lapuerta P. Predominance of isolated systolic hypertension among middle-aged and elderly US hypertensives: analysis based on National Health and Nutrition Examination Survey (NHANES) III. Hypertension. 2001;37(3):869–74. https://doi.org/10.1161/01.hyp.37.3.869.

Article  CAS  PubMed  Google Scholar 

Paneni F, Diaz Cañestro C,Libby P,Lüscher TF, Camici GG. The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol, 2017;69(15): 1952–1967.https://doi.org/10.1016/j.jacc.2017.01.064

Conrad N, Judge A, Tran J, Mohseni H,Hedgecott D, Crespillo AP, et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet. 2018;391(10120):572–80. https://doi.org/10.1016/s0140-6736(17)32520-5.

Article  PubMed  PubMed Central  Google Scholar 

Rapsomaniki E, Timmis A, Pujades-Rodriguez M, Shah AD, Denaxas S, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet. 2014;383(9932):1899–911. https://doi.org/10.1016/s0140-6736(14)60685-1.

Article  PubMed  PubMed Central  Google Scholar 

Benetos A, Bulpitt CJ,Petrovic M, Ungar A, Agabiti Rosei E, Cherubini A, et al. An expert opinion from the european society of hypertension-european union geriatric medicine society working group on the management of hypertension in very old. Frail Subj Hypertens. 2016;67(5):820–5. https://doi.org/10.1161/hypertensionaha.115.07020.

Article  CAS  Google Scholar 

Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8(1):30–41. https://doi.org/10.1038/nrcardio.2010.165.

Article  PubMed  Google Scholar 

Echeverria LE, Martinez E, Gomez-Mesa J, Rivera-Toquica A. Zarama M,Ramírez EG,et al. J Card Fail. 2023;29(4):637–8. https://doi.org/10.1016/j.cardfail.2022.10.223. Clinical Characteristics And Outcomes Of Patients With Heart Failure Of Hypertensive Etiology: Analysis Of The Colombian Registry Of Heart Failure [J].

Aguilar D. Preventing heart failure in people with hypertension: the time is now [J]. JACC Heart Fail. 2023;11(6):689–90. https://doi.org/10.1016/j.jchf.2023.04.004.

Article  CAS  PubMed  Google Scholar 

Arroyo JCT, Delima AJP. An optimized neural network using genetic Algorithm for Cardiovascular Disease prediction. Journal of Advances in Information Technology; 2022.

Lin CM, Lin YS. Utilizing a two-stage Taguchi Method and Artificial neural network for the precise forecasting of Cardiovascular Disease risk [J]. Bioeng (Basel). 2023;10(11). https://doi.org/10.3390/bioengineering10111286.

Lin C-M, Lin Y-S, TPTM-HANN-GA:. A Novel Hyperparameter Optimization Framework Integrating the Taguchi Method, an Artificial Neural Network, and a Genetic Algorithm for the Precise Prediction of Cardiovascular Disease Risk [J]. Mathematics, 2024.

Sadr H, Salari A, Ashoobi MT, Nazari M. Cardiovascular disease diagnosis: a holistic approach using the integration of machine learning and deep learning models [J]. Eur J Med Res. 2024;29(1):455. https://doi.org/10.1186/s40001-024-02044-7.

Article  PubMed  PubMed Central  Google Scholar 

Tohyama T, Ide T, Ikeda M,Kaku H, Enzan N,Matsushima S, et al. Machine learning-based model for predicting 1 year mortality of hospitalized patients with heart failure [J]. ESC Heart Fail. 2021;8(5):4077–85. https://doi.org/10.1002/ehf2.13556.

Article  PubMed  PubMed Central  Google Scholar 

Li F, Xin H, Zhang J, Lian Z. Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database [J]. BMJ Open. 2021;11(7):e044779. https://doi.org/10.1136/bmjopen-2020-044779.

Article  PubMed  PubMed Central  Google Scholar 

Dharmarathne G, Bogahawaththa M, Mcafee M, Rathnayake US, Meddage DPP. On the diagnosis of chronic kidney disease using a machine learning-based interface with explainable artificial intelligence [J]. Intell Syst Appl. 2024;22:200397.

Google Scholar 

Dharmarathne G, Bogahawaththa M, Rathnayake US, Meddage DPP. Integrating explainable machine learning and user-centric model for diagnosing cardiovascular disease: a novel approach [J]. Intell Syst Appl. 2024;23:200428.

Google Scholar 

Dharmarathne G, Jayasinghe TN, Bogahawaththa M, Meddage DP, Rathnayake U. A novel machine learning approach for diagnosing diabetes with a self-explainable interface. Healthcare Anal. 2024;5:100301.

Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement [J]. BMJ. 2015;350:g7594. https://doi.org/10.1136/bmj.g7594.

Article  CAS  PubMed  Google Scholar 

Vasques AC, Novaes FS, De Oliveira Mda S, Souza JR, Yamanaka A,Pareja JC, et al. TyG index performs better than HOMA in a Brazilian population: a hyperglycemic clamp validated study [J]. Diabetes Res Clin Pract. 2011;93(3):e98–100. https://doi.org/10.1016/j.diabres.2011.05.030.

Article  CAS  PubMed  Google Scholar 

Chao P, Cui X,Wang S, Zhang L, Ma Q, Zhang X. Serum albumin and the short-term mortality in individuals with congestive heart failure in intensive care unit: an analysis of MIMIC [J]. Sci Rep. 2022;12(1):16251. https://doi.org/10.1038/s41598-022-20600-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Xiao S, Jiao X, Shen Y. The triglyceride-glucose index is a predictor for cardiovascular and all-cause mortality in CVD patients with diabetes or pre-diabetes: evidence from NHANES 2001–2018 [J]. Cardiovasc Diabetol. 2023;22(1):279. https://doi.org/10.1186/s12933-023-02030-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen J, Pan Q, Du LL,Song JJ, Liu YP, Meng XB, et al. Association of triglyceride-glucose index with atherosclerotic cardiovascular disease and mortality among familial hypercholesterolemia patients [J]. Diabetol Metab Syndr. 2023;15(1):39. https://doi.org/10.1186/s13098-023-01009-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, Wang CCH, Zhu D,Rao C, et al. Association between the triglyceride-glucose index and the risk of mortality among patients with chronic heart failure: results from a retrospective cohort study in China [J]. Cardiovasc Diabetol. 2023;22(1):171. https://doi.org/10.1186/s12933-023-01895-4.

Article  CAS 

留言 (0)

沒有登入
gif