Dillmann WH. Diabetic Cardiomyopathy. Circ Res. 2019;124(8):1160–2. https://doi.org/10.1161/circresaha.118.314665.
Article CAS PubMed PubMed Central Google Scholar
Seferović PM, Paulus WJ, Rosano G, Polovina M, Petrie MC, Jhund PS, et al. Diabetic myocardial disorder. A clinical consensus statement of the Heart Failure Association of the ESC and the ESC Working Group on Myocardial & Pericardial Diseases. Eur J Heart Fail. 2024. https://doi.org/10.1002/ejhf.3347.
Glovaci D, Fan W, Wong ND. Epidemiology of diabetes Mellitus and Cardiovascular Disease. Curr Cardiol Rep. 2019;21(4):21. https://doi.org/10.1007/s11886-019-1107-y.
Dauriz M, Mantovani A, Bonapace S, Verlato G, Zoppini G, Bonora E, et al. Prognostic impact of diabetes on long-term survival outcomes in patients with heart failure: a Meta-analysis. Diabetes Care. 2017;40(11):1597–605. https://doi.org/10.2337/dc17-0697.
Dauriz M, Targher G, Temporelli PL, Lucci D, Gonzini L, Nicolosi GL, et al. Prognostic impact of diabetes and prediabetes on survival outcomes in patients with Chronic Heart failure: a post-hoc analysis of the GISSI-HF (Gruppo Italiano per lo Studio della Sopravvivenza Nella Insufficienza Cardiaca-Heart failure) trial. J Am Heart Association. 2017;6(7). https://doi.org/10.1161/jaha.116.005156.
Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. 2023 ESC guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J. 2023;44(39):4043–140. https://doi.org/10.1093/eurheartj/ehad192.
Article CAS PubMed Google Scholar
Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–38. https://doi.org/10.1161/circresaha.117.311586.
Article CAS PubMed PubMed Central Google Scholar
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Reviews Cardiol. 2020;17(9):585–607. https://doi.org/10.1038/s41569-020-0339-2.
Murtaza G, Virk HUH, Khalid M, Lavie CJ, Ventura H, Mukherjee D, et al. Diabetic cardiomyopathy - A comprehensive updated review. Prog Cardiovasc Dis. 2019;62(4):315–26. https://doi.org/10.1016/j.pcad.2019.03.003.
Xu G, Zhao X, Fu J, Wang X. Resveratrol increase myocardial Nrf2 expression in type 2 diabetic rats and alleviate myocardial ischemia/reperfusion injury (MIRI). Annals Palliat Med. 2019;8(5):565–75. https://doi.org/10.21037/apm.2019.11.25.
Sung MM, Hamza SM, Dyck JR. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal. 2015;22(17):1606–30. https://doi.org/10.1089/ars.2015.6305.
Article CAS PubMed Google Scholar
Kroon PA, Iyer A, Chunduri P, Chan V, Brown L. The Cardiovascular Nutrapharmacology of Resveratrol: Pharmacokinetics, Molecular mechanisms and therapeutic potential. Curr Med Chem. 2010;17(23):2442–55. https://doi.org/10.2174/092986710791556032.
Article CAS PubMed Google Scholar
Abdelhaleem IA, Brakat AM, Adayel HM, Asla MM, Rizk MA, Aboalfetoh AY. The effects of resveratrol on glycemic control and cardiometabolic parameters in patients with T2DM: a systematic review and meta-analysis. Med Clin. 2022;158(12):576–85. https://doi.org/10.1016/j.medcli.2021.06.028.
Delpino FM, Figueiredo LM. Resveratrol supplementation and type 2 diabetes: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022;62(16):4465–80. https://doi.org/10.1080/10408398.2021.1875980.
Article CAS PubMed Google Scholar
Ahmad I, Hoda M. Molecular mechanisms of action of resveratrol in modulation of diabetic and non-diabetic cardiomyopathy. Pharmacol Res. 2020;161:12. https://doi.org/10.1016/j.phrs.2020.105112.
Wang G, Song X, Zhao L, Li Z, Liu B. Resveratrol prevents Diabetic Cardiomyopathy by increasing Nrf2 expression and transcriptional activity. Biomed Res Int. 2018;2018:2150218. https://doi.org/10.1155/2018/2150218.
Article CAS PubMed PubMed Central Google Scholar
Fang WJ, Li XM, Zhou XK, Xiong Y. Resveratrol improves diabetic cardiomyopathy by preventing asymmetric dimethylarginine-caused peroxisome proliferator-activated receptor-γ coactivator-1α acetylation. Eur J Pharmacol. 2022;936:175342. https://doi.org/10.1016/j.ejphar.2022.175342.
Article CAS PubMed Google Scholar
Diao J, Wei J, Yan R, Fan G, Lin L, Chen M. Effects of resveratrol on regulation on UCP2 and cardiac function in diabetic rats. J Physiol Biochem. 2019;75(1):39–51. https://doi.org/10.1007/s13105-018-0648-7.
Article CAS PubMed Google Scholar
Fang WJ, Wang CJ, He Y, Zhou YL, Peng XD, Liu SK. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin. 2018;39(1):59–73. https://doi.org/10.1038/aps.2017.50.
Article CAS PubMed Google Scholar
Higgins JP, Green SJW-B. Cochrane Handbook for Systematic Reviews of Interventions. 2008.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical Res ed). 2021;372:n71. https://doi.org/10.1136/bmj.n71.
Cordis GA, Das DK, Riedel W. High-performance liquid chromatographic peak identification of 2,4-dinitrophenylhydrazine derivatives of lipid peroxidation aldehydes by photodiode array detection. J Chromatogr A. 1998;798(1–2):117–23. https://doi.org/10.1016/s0021-9673(97)01161-8.
Article CAS PubMed Google Scholar
Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43. https://doi.org/10.1186/1471-2288-14-43.
Article PubMed PubMed Central Google Scholar
GH G, AD O, Y F-Y GEVRK, P A-C et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. 2008;336(7650):924–6. https://doi.org/10.1136/bmj.39489.470347.AD
Canbolat İP, Çavuşoğlu T, Yiğittürk G, Ateş U, Erbaş O. The protective role of Resveratrol on Diabetic Cardiomyopathy in Streptozocin Induced Diabetic rats. E J Cardiovasc Med. 2020;7(2):84–8. https://doi.org/10.32596/ejcm.galenos.2019.00023.
Ma S, Feng J, Zhang R, Chen JW, Han D, Li X, et al. SIRT1 activation by Resveratrol alleviates Cardiac Dysfunction via mitochondrial regulation in Diabetic Cardiomyopathy mice. Oxidative Med Cell Longev. 2017;2017:15. https://doi.org/10.1155/2017/4602715.
Mohammadshahi M, Haidari F, Soufi FG. Chronic resveratrol administration improves diabetic cardiomyopathy in part by reducing oxidative stress. Cardiol J. 2014;21(1):39–46. https://doi.org/10.5603/CJ.a2013.0051.
ShamsEldeen AM, Ashour H, Shoukry HS, Fadel M, Kamar SS, Aabdelbaset M, et al. Combined treatment with systemic resveratrol and resveratrol preconditioned mesenchymal stem cells, maximizes antifibrotic action in diabetic cardiomyopathy. J Cell Physiol. 2019;234(7):10942–63. https://doi.org/10.1002/jcp.27947.
Article CAS PubMed Google Scholar
Song X, Huang G, Han W, Zhao Y, Dong P. Protective effect of resveratrol in combination with ursolic acid against diabetic cardiomyopathy via improving myocardial function and attenuation of inflammation and oxidative stress. Acta Pol Pharm - Drug Res. 2020;77(4):601–7. https://doi.org/10.32383/appdr/123535.
Wang G, Song XJ, Zhao L, Li ZB, Liu B. Resveratrol prevents Diabetic Cardiomyopathy by increasing Nrf2 expression and transcriptional activity. Biomed Res Int. 2018;2018:13. https://doi.org/10.1155/2018/2150218.
Wu ZY, Huang AQ, Yan JY, Liu B, Liu QC, Zhang JW, et al. Resveratrol ameliorates Cardiac Dysfunction by inhibiting apoptosis via the PI3K/Akt/FoxO3a pathway in a rat model of Diabetic Cardiomyopathy. J Cardiovasc Pharmacol. 2017;70(3):184–93. https://doi.org/10.1097/fjc.0000000000000504.
Article CAS PubMed Google Scholar
Yan R, Shan H, Lin L, Zhang M, Diao JY, Li Q, et al. Chronic resveratrol treatment improves cardiac function in a rat model of diabetic cardiomyopathy via attenuation of mitochondrial injury and myocardial apoptosis. Int J Clin Exp Med. 2016;9(11):21156–67.
留言 (0)