A double-edged sword effect of silver nanoparticles on angiogenesis in 4T1 breast cancer-bearing mice

AbbasalizadFarhangi M, Vajdi M (2021) Dietary Total Antioxidant Capacity (TAC) Significantly Reduces the Risk of Site-Specific Cancers: An Updated Systematic Review and Meta-Analysis. Nutr Cancer 73(5):721–739

Article  CAS  Google Scholar 

Agnihotri R et al (2001) Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 276(30):28261–28267

Article  CAS  PubMed  Google Scholar 

Ahmed SM, Abdelrahman SA, Shalaby SM (2017) Evaluating the effect of silver nanoparticles on testes of adult albino rats (histological, immunohistochemical and biochemical study). J Mol Histol 48(1):9–27

Article  CAS  PubMed  Google Scholar 

Ahmed NH et al (2018) Role of chitosan nanoparticles as anti-angiogenic in mice bearing Ehrlich carcinoma. Oncol Res Rev 1(3):1–6

Article  CAS  Google Scholar 

Ahmed MJ et al (2019) Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents. Drug Dev Ind Pharm 45(10):1682–1694

Article  CAS  PubMed  Google Scholar 

Almutairi B et al (2020) Investigation of cytotoxicity apoptotic and inflammatory responses of biosynthesized zinc oxide nanoparticles from ocimum sanctum linn in human skin keratinocyte (hacat) and human lung epithelial (A549) cells. Oxid Med Cell Longev 2020(1):1835475

PubMed  PubMed Central  Google Scholar 

Alyami NM, Alyami HM, Almeer R (2022b) Using green biosynthesized kaempferol-coated sliver nanoparticles to inhibit cancer cells growth: An in vitro study using hepatocellular carcinoma (HepG2). Cancer Nanotechnol 13(1):26

Article  CAS  Google Scholar 

Alyami NM et al (2024) Determination of dose-and time-dependent hepatotoxicity and apoptosis of Lanthanum oxide nanoparticles in female Swiss albino mice. Environ Sci Pollut Res 31(11):17124–17139

Article  CAS  Google Scholar 

Alyami NM, Almeer R, Alyami HM (2022) Role of green synthesized platinum nanoparticles in cytotoxicity, oxidative stress, and apoptosis of human colon cancer cells (HCT-116). Heliyon 8(12)

Ansari MA et al (2016) Biochemical, histopathological, and transmission electron microscopic ultrastructural changes in mice after exposure to silver nanoparticles. Environ Toxicol 31(8):945–956

Article  CAS  PubMed  Google Scholar 

Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: An update. Bioeng Transl Med 4(3):e10143

Article  PubMed  PubMed Central  Google Scholar 

Asare N et al (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicol 291(1–3):65–72

Article  CAS  Google Scholar 

Asharani P et al (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnol 19(25):255102

Article  CAS  Google Scholar 

AshaRani PV, Hande MP, Valiyaveettil S (2009a) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10(1):65

Article  CAS  PubMed  PubMed Central  Google Scholar 

AshaRani P et al (2009b) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

Article  CAS  PubMed  Google Scholar 

Awasthi R et al (2018) Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets 19(14):1696–1709

Article  CAS  PubMed  Google Scholar 

Bedlovičová Z et al (2020) A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles. Mol 25(14):3191

Article  Google Scholar 

Castiglioni S et al (2014) Short-and long-term effects of silver nanoparticles on human microvascular endothelial cells. World J Biol Chem 5(4):457

Article  PubMed  PubMed Central  Google Scholar 

Chang L et al (2019) Breast cancer treatment and its effects on aging. J Geriatr Oncol 10(2):346–355

Article  PubMed  Google Scholar 

Chen Y et al (2020) Silver nanoparticles regulate autophagy through lysosome injury and cell hypoxia in prostate cancer cells. J Biochem Mol Toxicol 34(5):e22474

Article  CAS  PubMed  Google Scholar 

da Rocha MCO et al (2020) Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J Nanobiotechnol 18(1):1–20

Article  Google Scholar 

Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47(9):4140–4146

Article  CAS  PubMed  Google Scholar 

Docea AO et al (2020) The effect of silver nanoparticles on antioxidant/pro-oxidant balance in a murine model. Int J Mol Sci 21(4):1233

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Deeb NM et al (2022) Arthrospira platensis-Mediated Green Biosynthesis of Silver Nano-particles as Breast Cancer Controlling Agent: In Vitro and In Vivo Safety Approaches. Appl Biochem Biotechnol 194(5):2183–2203

Article  CAS  PubMed  Google Scholar 

ErtenŞener D et al (2007) Lipid peroxidation and total antioxidant status in patients with breast cancer. Cell Biochemi Funct Cell Biochem Modulation Active Agents Dis 25(4):377–382

Google Scholar 

Farrell D et al (2011) Nanotechnology-Based Cancer Therapeutics—Promise and Challenge—Lessons Learned Through the NCI Alliance for Nanotechnology in Cancer. Pharm Res 28(2):273–278

Article  CAS  PubMed  Google Scholar 

Flores-López LZ, Espinoza-Gómez H, Somanathan R (2019) Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol 39(1):16–26

Article  PubMed  Google Scholar 

Fraga CG, Oteiza PI, Galleano M (2014) In vitro measurements and interpretation of total antioxidant capacity. Biochimica et Biophysica Acta (BBA) - General Subjects 1840(2):931–934

Article  CAS  PubMed  Google Scholar 

Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27

Article  CAS  PubMed  Google Scholar 

Greulich C et al (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2(17):6981–6987

Article  CAS  Google Scholar 

Gupta D (2015) Methods for determination of antioxidant capacity: A review. Int J Pharm Sci Res 6(2):546

CAS  Google Scholar 

Gurunathan S et al (2013) Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells. Biomed Res Int 2013:535796

Article  PubMed  PubMed Central  Google Scholar 

HashemiGoradel N et al (2018) Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol 233(4):2902–2910

Article  CAS  Google Scholar 

Hernández M et al (2021) Dual chemotherapy with benznidazole at suboptimal dose plus curcumin nanoparticles mitigates Trypanosoma cruzi-elicited chronic cardiomyopathy. Parasitol Int 81:102248

Article  PubMed  Google Scholar 

In Vitro Cytotoxicity Test Methods for Estimating Acute Oral Systemic Toxicity (2006) National Institute of Environmental Health Sciences, National Institutes of Health. Public Health Service, Department of Health and Human Services, U.S

Google Scholar 

Inkielewicz-Stepniak I et al (2014) Pharmacological and toxicological effects of co-exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride. Int J Nanomed 9:1677

Google Scholar 

Jacob JA, Shanmugam A (2015) Silver nanoparticles provoke apoptosis of Dalton’s ascites lymphoma in vivo by mitochondria dependent and independent pathways. Colloids Surf, B 136:1011–1016

Article  CAS  Google Scholar 

Jiang H, Li H (2021) Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: a systematic review and meta

留言 (0)

沒有登入
gif