Senescence as a therapeutic target in cancer and age-related diseases

Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

Article  CAS  PubMed  Google Scholar 

Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961). This article is a pioneering study that defines the concept of cellular senescence.

Article  CAS  PubMed  Google Scholar 

d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

Article  PubMed  Google Scholar 

Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

Article  CAS  PubMed  Google Scholar 

Chang, B. D. et al. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18, 4808–4818 (1999).

Article  CAS  PubMed  Google Scholar 

Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002). Together with Chang et al. (1999), this work describes the concept of TIS in human cells and mouse models for the first time.

Article  CAS  PubMed  Google Scholar 

Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, S. et al. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature 599, 283–289 (2021).

Article  CAS  PubMed  Google Scholar 

Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

Article  PubMed  Google Scholar 

Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

Article  CAS  PubMed  Google Scholar 

Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013). Together with Storer et al. (2013), this work is the first study to describe developmental senescence.

Article  CAS  PubMed  Google Scholar 

Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

Article  CAS  PubMed  Google Scholar 

Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

Article  CAS  PubMed  Google Scholar 

Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of PTEN-deficient tumorigenesis. Nature 436, 725–730 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

Article  CAS  PubMed  Google Scholar 

Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016). This article identifies the beneficial effects of senolysis in naturally aged mouse models.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

Article  CAS  PubMed  Google Scholar 

Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015).

Article  CAS  PubMed  Google Scholar 

Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109–112 (2013).

Article  CAS  PubMed  Google Scholar 

Kondoh, H. et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65, 177–185 (2005).

Article  CAS  PubMed  Google Scholar 

Young, A. R. et al. Autophagy mediates the mitotic senescence transition. Genes. Dev. 23, 798–803 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandra, T. & Narita, M. High-order chromatin structure and the epigenome in SAHFs. Nucleus 4, 23–28 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

Article  CAS  PubMed  Google Scholar 

Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007). Together with Kang et al. (2011), this work is the first study to describe immune surveillance of SnCs.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

Article  CAS  PubMed  Google Scholar 

Jun, J. I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ritschka, B. et al. The senescence-ass

留言 (0)

沒有登入
gif