DNA damage response inhibitors in cancer therapy: lessons from the past, current status and future implications

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). This key review updates Hanahan and Wieinberg’s original landmark paper of 2000 with additional focus on genetic instability as an enabling characteristic and drugs targeting the hallmarks of cancer.

Article  PubMed  CAS  Google Scholar 

Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

Article  PubMed  CAS  Google Scholar 

Bieging, K. T., Mello, S. S. & Attardi, L. D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14, 359–370 (2014).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Boulton, S. J. Cellular functions of the BRCA tumour-suppressor proteins. Biochem. Soc. Trans. 34, 633–645 (2006).

Article  PubMed  CAS  Google Scholar 

Sarni, D. & Kerem, B. Oncogene-induced replication stress drives genome instability and tumorigenesis. Int. J. Mol. Sci. 18, 1339 (2017).

Article  PubMed Central  Google Scholar 

Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 22, 1071–1078 (2009). This is an excellent review of the DDR and its implications for human health that remains relevant today.

Article  Google Scholar 

Groelly, F. J., Fawkes, M., Dagg, R. A., Blackford, A. N. & Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 23, 78–94 (2023). This is an up-to-date review of the anticancer potential of targeting the DDR.

Article  PubMed  CAS  Google Scholar 

Colvin, M. & Chabner, B.A. in Cancer Chemotherapy: Principles and Practice (eds Chabner, B. A. & Collins, J. M.) 276–313 (Lippincott, 1990).

Pegg, A. E. Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res. 50, 6119–6129 (1990).

PubMed  CAS  Google Scholar 

Rabik, C. A., Njoku, M. C. & Dolan, M. E. Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat. Rev. 32, 261–276 (2006).

Article  PubMed  CAS  Google Scholar 

Blumenthal, D. T. et al. A Phase III study of radiation therapy (RT) and O6-benzylguanine + BCNU versus RT and BCNU alone and methylation status in newly diagnosed glioblastoma and gliosarcoma: Southwest Oncology Group (SWOG) study S0001. Int. J. Clin. Oncol. 20, 650–658 (2015).

Article  PubMed  CAS  Google Scholar 

Tawbi, H. A. et al. Inhibition of DNA repair with MGMT pseudosubstrates: phase I study of lomeguatrib in combination with dacarbazine in patients with advanced melanoma and other solid tumours. Br. J. Cancer 105, 773–777 (2011).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yu, W., Zhang, L., Wei, Q. & Shao, A. O6-methylguanine-DNA methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy. Front. Oncol. 17, 1547 (2020).

Article  Google Scholar 

Butler, M. et al. MGMT status as a clinical biomarker in glioblastoma. Trends Cancer 6, 380–391 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Purnell, M. R. & Whish, W. J. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem. J. 185, 775–777 (1980).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Durkacz, B. W., Omidiji, O., Gray, D. A. & Shall, S. (ADP-ribose)n participates in DNA excision repair. Nature 283, 593–596 (1980). This study and that by Purnell & Whish (1980) show for the first time how the first PARPi, 3-aminobenzamide, potentiates the cytotoxicity of DNA methylating agents, suggesting its anticancer therapy potential.

Article  PubMed  CAS  Google Scholar 

Ben-Hur, E. Involvement of poly(ADP-ribose) in the radiation response of mammalian cells. Int. J. Radiat. Biol. 46, 659–671 (1984).

CAS  Google Scholar 

Banasik, M., Komura, H., Shimoyama, M. & Ueda, K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J. Biol. Chem. 267, 1569–1575 (1992). This article describes the identification, through the classic ‘analogue by catalogue’ approach, of many potent PARPis, some of which have been further elaborated to give us some of today’s clinical drugs.

Article  PubMed  CAS  Google Scholar 

Arundel-Suto, C. M., Scavone, S. V., Turner, W. R., Suto, M. J. & Sebolt-Leopold, J. S. Effects of PD128763, a new potent inhibitor of poly(ADP-ribose) polymerase, on X-ray induced cellular recovery processes in Chinese hamster V79 cells. Radiat. Res. 126, 367–371 (1991).

Article  PubMed  CAS  Google Scholar 

Griffin, R. J. et al. Novel potent inhibitors of the DNA repair enzyme poly(ADP-ribose)polymerase (PARP). Anticancer Drug. Des. 10, 507–514 (1995).

PubMed  CAS  Google Scholar 

Bowman, K. J., Newell, D. R., Calvert, A. H. & Curtin, N. J. Differential effects of the poly (ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity in L1210 cells in vitro. Br. J. Cancer 84, 106–112 (2001).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Smith, L. M., Willmore, E., Austin, C. A. & Curtin, N. J. The novel poly(ADP-Ribose) polymerase inhibitor, AG14361, sensitizes cells to topoisomerase I poisons by increasing the persistence of DNA strand breaks. Clin. Cancer Res. 11, 8449–8457 (2005).

Article  PubMed  CAS  Google Scholar 

Wang, Z. Q. et al. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 9, 509–520 (1995).

Article  PubMed  CAS  Google Scholar 

De Murcia, J. M. et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl Acad. Sci. USA 94, 7303–7307 (1997). This reference and Wang et al. (1995) are the first reports to describe PARP1-knockout mice.

Article  PubMed  PubMed Central  Google Scholar 

Ménissier de Murcia, J. et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22, 2255–2263 (2003).

Article  PubMed  PubMed Central  Google Scholar 

Satoh, M. S. & Lindahl, T. Role of poly(ADP-ribose) formation in DNA repair. Nature 356, 356–358 (1992). This paper explores the role of PARP in DNA SSBR and is the first to describe the phenomenon in which inactive PARP (in the absence of substrate NAD+or in the presence of an inhibitor) has a much greater impact on the persistence of DNA damage than the depletion of PARP. The authors propose that PARP binding to the DNA break obstructs the repair machinery, unless it can auto-polyADP-ribosylate and dissociate from the break.

Article  PubMed  CAS  Google Scholar 

Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012). This article is one of the most recent studies determining that the trapping potency — rather than catalytic inhibition potency — of clinically active PARPis correlates with their cytotoxicity.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ferraris, D. V. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J. Med. Chem. 53, 4561–4584 (2010).

Article  PubMed  CAS  Google Scholar 

Thomas, H. D. et al. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol. Cancer Ther. 6, 945–956 (2007).

Article  PubMed  CAS  Google Scholar 

Plummer, R. et al. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res. 14, 7917–7923 (2008). This paper describes the first clinical trial with a PARPi that included pharmacodynamic as well as pharmacokinetic monitoring to achieve the levels of PARP inhibition predicted to be active from in vivo preclinical studies.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lu, Y., Liu, Y., Pang, Y., Pacak, K. & Yang, C. Double-barreled gun: combination of PARP inhibitor with conventional chemotherapy. Pharmacol. Ther. 188, 168–175 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Curtin, N. J. & Szabo, C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat. Rev. Drug Discov. 19, 711–736 (2020).

Article  PubMed  CAS 

留言 (0)

沒有登入
gif