Thermo-amplifier circuit in probiotic E. coli for stringently temperature-controlled release of a novel antibiotic

Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, Wang X, Wang R, Fu C. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther. 2022;7(1):48.

Article  Google Scholar 

Pereira AJ, de Campos LJ, Xing H, Conda-Sheridan M. Peptide-based therapeutics: challenges and solutions. Med Chem Res. 2024;27:1–6.

Google Scholar 

Fetse J, Kandel S, Mamani UF, Cheng K. Recent advances in the development of therapeutic peptides. Trends Pharmacol Sci. 2023;44(7):425–41.

Article  Google Scholar 

Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–47.

Article  Google Scholar 

Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R, Manuse S, Caboni M, Mori M, Niles S, Ghiglieri M, Honrao C. A new antibiotic selectively kills Gram-negative pathogens. Nature. 2019;576(7787):459–64.

Article  Google Scholar 

Seyfert CE, Porten C, Yuan B, Deckarm S, Panter F, Bader CD, Coetzee J, Deschner F, Tehrani KH, Higgins PG, Seifert H. Darobactins exhibiting superior antibiotic activity by Cryo-EM structure guided biosynthetic engineering. Angew Chem Int Ed. 2023;62(2):e202214094.

Article  Google Scholar 

Li X, Ma S, Zhang Q. Chemical synthesis and biosynthesis of darobactin. Tetrahedron Lett. 2023;116:154337.

Article  Google Scholar 

Wuisan ZG, Kresna ID, Böhringer N, Lewis K, Schäberle TF. Optimization of heterologous Darobactin A expression and identification of the minimal biosynthetic gene cluster. Metab Eng. 2021;1(66):123–36.

Article  Google Scholar 

Groß S, Panter F, Pogorevc D, Seyfert CE, Deckarm S, Bader CD, Herrmann J, Müller R. Improved broad-spectrum antibiotics against Gram-negative pathogens via darobactin biosynthetic pathway engineering. Chem Sci. 2021;12(35):11882–93.

Article  Google Scholar 

Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA, Tuma RB, Gracindo A, Cesar MB, Freire PJ, da Costa AF, Lins MR. Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol. 2019;37(1):100–15.

Article  Google Scholar 

Charbonneau MR, Isabella VM, Li N, Kurtz CB. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat Commun. 2020;11(1):1738.

Article  Google Scholar 

Liu Y, Feng J, Pan H, Zhang X, Zhang Y. Genetically engineered bacterium: Principles, practices, and prospects. Front Microbiol. 2022;13:997587.

Article  Google Scholar 

Kelly VW, Liang BK, Sirk SJ. Living therapeutics: the next frontier of precision medicine. ACS Synth Biol. 2020;9(12):3184–201.

Article  Google Scholar 

Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013;26(2):185–230.

Article  Google Scholar 

Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, Anderson CL, Li N, Fisher AB, West KA, Reeder PJ. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol. 2018;36(9):857–64.

Article  Google Scholar 

Medina C, Camacho EM, Flores A, Mesa-Pereira B, Santero E. Improved expression systems for regulated expression in Salmonella infecting eukaryotic cells. PLoS ONE. 2011;6(8):e23055.

Article  Google Scholar 

Liu X, Wu M, Wang M, Duan Y, Phan C, Qi G, Tang G, Liu B. Metabolically engineered bacteria as light-controlled living therapeutics for anti-angiogenesis tumor therapy. Mater Horiz. 2021;8(5):1454–60.

Article  Google Scholar 

Piraner DI, Abedi MH, Moser BA, Lee-Gosselin A, Shapiro MG. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat Chem Biol. 2017;13(1):75–80.

Article  Google Scholar 

Maresca D, Lakshmanan A, Abedi M, Bar-Zion A, Farhadi A, Lu GJ, Szablowski JO, Wu D, Yoo S, Shapiro MG. Biomolecular ultrasound and sonogenetics. Annu Rev Chem Biomol Eng. 2018;9(1):229–52.

Article  Google Scholar 

Omer R, Mohsin MZ, Mohsin A, Mushtaq BS, Huang X, Guo M, Zhuang Y, Huang J. Engineered bacteria-based living materials for biotherapeutic applications. Front Bioeng Biotechnol. 2022;28(10):870675.

Article  Google Scholar 

Rodrigo-Navarro A, Sankaran S, Dalby MJ, del Campo A, Salmeron-Sanchez M. Engineered living biomaterials. Nat Rev Mater. 2021;6(12):1175–90.

Article  Google Scholar 

Dey S, Sankaran S. Engineered bacterial therapeutics with material solutions. Trends Biotechnol. 2024. https://doi.org/10.1016/j.tibtech.2024.06.011.

Zhou Y, Han Y. Engineered bacteria as drug delivery vehicles: principles and prospects. Eng Microbiol. 2022;2(3):100034.

Article  Google Scholar 

Kan A, Gelfat I, Emani S, Praveschotinunt P, Joshi NS. Plasmid vectors for in vivo selection-free use with the probiotic E. coli Nissle 1917. ACS Synthetic Biol. 2020;10(1):94–106.

Article  Google Scholar 

Abedi MH, Yao MS, Mittelstein DR, Bar-Zion A, Swift MB, Lee-Gosselin A, Barturen-Larrea P, Buss MT, Shapiro MG. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nat Commun. 2022;13(1):1585.

Article  Google Scholar 

Li L, Pan H, Pang G, Lang H, Shen Y, Sun T, Zhang Y, Liu J, Chang J, Kang J, Zheng H. Precise thermal regulation of engineered bacteria secretion for breast cancer treatment in vivo. ACS Synth Biol. 2022;11(3):1167–77.

Article  Google Scholar 

Sankaran S, Becker J, Wittmann C, Del Campo A. Optoregulated drug release from an engineered living material: self-replenishing drug depots for long-term, light-regulated delivery. Small. 2019;15(5):1804717.

Article  Google Scholar 

Sugianto W, Altin-Yavuzarslan G, Tickman BI, Kiattisewee C, Yuan SF, Brooks SM, Wong J, Alper HS, Nelson A, Carothers JM. Gene expression dynamics in input-responsive engineered living materials programmed for bioproduction. Materials Today Bio. 2023;1(20):100677.

Article  Google Scholar 

Seyfert CE, Müller AV, Walsh DJ, Birkelbach J, Kany AM, Porten C, Yuan B, Krug D, Herrmann J, Marlovits TC, Hirsch AK. New genetically engineered derivatives of antibacterial darobactins underpin their potential for antibiotic development. J Med Chem. 2023;66(23):16330–41.

Article  Google Scholar 

Škulj M, Okršlar V, Jalen Š, Jevševar S, Slanc P, Štrukelj B, Menart V. Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes. Microb Cell Fact. 2008;7:1–2.

Article  Google Scholar 

Smati M, Clermont O, Le Gal F, Schichmanoff O, Jauréguy F, Eddi A, Denamur E, Picard B, Coliville Group. Real-time PCR for quantitative analysis of human commensal Escherichia coli populations reveals a high frequency of subdominant phylogroups. Applied and environmental microbiology. 2013;79(16):5005–12.

Article  Google Scholar 

Nickerson KP, Faherty CS. Bile salt-induced biofilm formation in enteric pathogens: techniques for identification and quantification. JoVE (Journal of Visualized Experiments). 2018;135:e57322.

Google Scholar 

Mamat U, Wilke K, Bramhill D, Schromm AB, Lindner B, Kohl TA, Corchero JL, Villaverde A, Schaffer L, Head SR, Souvignier C. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb Cell Fact. 2015;14:1–5.

Google Scholar 

Dhakane P, Tadimarri VS, Sankaran S. Light-Regulated Pro-Angiogenic Engineered Living Materials. Adv Func Mater. 2023;33(31):2212695.

Article  Google Scholar 

Yanamandra AK, Bhusari S, Del Campo A, Sankaran S, Qu B. In vitro evaluation of immune responses to bacterial hydrogels for the development of living therapeutic materials. Biomater Adv. 2023;1(153):213554.

Article  Google Scholar 

Nguyen H, Made Kresna ID, Böhringer N, Ruel J, Mora ED, Kramer JC, Lewis K, Nicolet Y, Schäberle TF, Yokoyama K. Characterization of a radical SAM oxygenase for the ether crosslinking in darobactin biosynthesis. J Am Chem Soc. 2022;144(41):18876–86.

Article  Google Scholar 

Basaran S, Dey S, Bhusari S, Sankaran S, Kraus T. Plasmonic stimulation of gold nanorods for the photothermal control of engineered living materials. Biomaterials Advances. 2023;147:213332.

Article  Google Scholar 

Singha TK, Gulati P, Mohanty A, Khasa YP, Kapoor RK, Kumar S. Efficient genetic approaches for improvement of plasmid based expression of recombinant protein in Escherichia coli: A review. Process Biochem. 2017;55:17–31.

Article  Google Scholar 

Landry BP, Tabor JJ. Engineering diagnostic and therapeutic gut bacteria. In: Bugs as drugs: therapeutic microbes for the prevention and treatment of disease. 2018. p. 331–61.

Aggarwal N, Breedon AM, Davis CM, Hwang IY, Chang MW. Engineering probiotics for therapeutic applications: recent examples and translational outlook. Curr Opin Biotechnol. 2020;65:171–9.

Article  Google Scholar 

Durmusoglu D, Al’Abri I, Li Z, Islam Williams T, Collins LB, Martínez JL, Crook N. Improving therapeutic protein secretion in the probiotic yeast Saccharomyces boulardii using a multifactorial engineering approach. Microbial Cell Factories. 2023;22(1):109.

Article  Google Scholar 

Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, Chang MW. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun. 2017;8(1):15028.

Article  Google Scholar 

Gurbatri CR, Lia I, Vincent R, Coker C, Castro S, Treuting PM, Hinchliffe TE, Arpaia N, Danino T. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Science translational medicine. 2020;12(530):eaax0876.

Article  Google Scholar 

Grady R, Hayes F. Axe-Txe, a broad-spectrum proteic toxin–antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol Microbiol. 2003;47(5):1419–32.

Article  Google Scholar 

Halvorsen EM, Williams JJ, Bhimani AJ, Billings EA, Hergenrother PJ. Txe, an endoribonuclease of the enterococcal Axe-Txe toxin–antitoxin system, cleaves mRNA and inhibits protein synthesis. Microbiology. 2011;157(2):387–97.

Article 

留言 (0)

沒有登入
gif