Kishimoto K, Ariga E, Ishigaki R, et al. Study of appropriate dosing in consideration of image quality and patient dose on the digital radiography. Jpn J Radiol Technol. 2011;67(11):1381–97. https://doi.org/10.6009/jjrt.67.1381. (in Japanese).
Samei E, Flynn MJ. An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys. 2003;30(4):608–22. https://doi.org/10.1118/1.1561285.
Samei E, Murphy S, Christianson O. Detector or system? Extending the concept of detective quantum efficiency to characterize the performance of digital radiographic imaging systems. Radiology. 2008;249(3):926–37. https://doi.org/10.1148/radiol.2492071734.
Article PubMed PubMed Central Google Scholar
Rivetti S, Lanconelli N, Campanini R, et al. Comparison of different commercial FFDM units by means of physical characterization and contrast-detail analysis. Med Phys. 2006;33(11):4198–209. https://doi.org/10.1118/1.2358195.
Monnin P, Gutierrez D, Bulling S, Guntern D, Verdun FR. A comparison of the performance of digital mammography systems. Med Phys. 2007;34(3):906–15. https://doi.org/10.1118/1.2432072.
Article CAS PubMed Google Scholar
Kim HK, Cunningham IA, Yin Z, Cho G. On the development of digital radiography detectors: A review. Int J Precision Eng Manuf. 2008;9(4):86–100.
Marshall NW, Smet M, Hofmans M, Pauwels H, Clercq TD, Bosmans H. Technical characterization of five x-ray detectors for pediatric radiography applications. Phys Med Biol. 2017;62:N573–86. https://doi.org/10.1088/1361-6560/aa9599.
Article CAS PubMed Google Scholar
Negishi T, Koba Y, Shinsho K, et al. Data analysis of average glandular dose in mammography toward revision of the diagnostic reference level of Japan. Radiol Phys Technol. 2024. https://doi.org/10.1007/s12194-024-00823-9.
Beutal J, Kundel HL, Matter RL. Handbook of medical imaging, volume 1. Physics and psychophysics. Bellingham: SPIE press; 2000.
Samei E, Murphy S, Christianson O. DQE of wireless digital detectors: Comparative performance with differing filtration schemes. Med Phys. 2013;40(8): 081910. https://doi.org/10.1118/1.4813298.
Rivetti S, Lanconelli N, Bertolini M, Nitrosi A, Burani A. Characterization of a clinical unit for digital radiography based on irradiation side sampling technology. Med Phys. 2013;40(10): 101902. https://doi.org/10.1118/1.4820364.
Article CAS PubMed Google Scholar
Tanaka N, Yano Y, Yabuuchi H, et al. Basic imaging properties of an indirect flat-panel detector system employing irradiation side sampling (ISS) technology for chest radiography: comparison with a computed radiographic system. Radiol Phys Technol. 2013;6:162–9. https://doi.org/10.1007/s12194-012-0184-z.
Shi L, Lu M, Bennett NR, et al. Characterization and potential applications of a dual-layer flat-panel detector. Med Phys. 2020;47(8):3332–43. https://doi.org/10.1002/mp.14211.
Article CAS PubMed Google Scholar
Mogami H, Onoike Y, Miyano H, et al. Lung cancer screening by single-shot dual-energy subtraction using flat-panel detector. Jpn J Radiol. 2021;39:1168–73. https://doi.org/10.1007/s11604-021-01163-z.
Article PubMed PubMed Central Google Scholar
CANON Medical Systems. CXDI-Elite. https://jp.medical.canon/products/xray/cxdi-elite. Accessed 30 July 2024.
Hayashi Y. Digital radiography system “CXDI-Elite” with built-in automatic exposure detection function. JIRA Technical Report. 2023;33(1):10–1 (in Japanese).
International Electrotechnical Commission (IEC). Medical electrical equipment—Part 2–54: Particular requirements for the basic safety and essential performance of X-ray equipment for radiography and radioscopy. IEC 60601–2–54; 2022.
International Electrotechnical Commission (IEC). Medical diagnostic X-ray equipment—Radiation conditions for use in the determination of characteristics. IEC 61267; 2005.
Ono T, Ichikawa H, Kato T. Evaluation of Detectability for Patient’s Movement in Portable Chest Radiography: Comparison of Visual Detection and Motion Detection Software. Jpn J Radiol Technol. 2022;78(8):838–45. https://doi.org/10.6009/jjrt.2022-1237. (in Japanese).
Ichikawa K, Ishida T. Image quality measurement of digital radiography. Tokyo: Ohmsha; 2010.
International Electrotechnical Commission (IEC). Medical electrical equipment—Characteristics of digital X-ray imaging devices—Part 1–1: Determination of the detective quantum efficiency - Detectors used in radiographic imaging. IEC 62220–1–1; 2015.
Maruyama S. Visualization of blurring process due to analog components in a digital radiography system using a simple method. Phys Eng Sci Med. 2020;43:1461–8. https://doi.org/10.1007/s13246-020-00939-3.
Zhao W, Rowlands JA. Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Med Phys. 1997;24(12):1819–33. https://doi.org/10.1118/1.598097.
Article CAS PubMed Google Scholar
Maruyama S, Shimosegawa M. Verification of the influence of the sampling aperture on the digital noise power spectrum. EPOS. 2020. https://doi.org/10.26044/ecr2020/C-04596.
Maruyama S. Exposure dose index based on noise factor analysis in digital mammography: verification using direct-type flat-panel detector system. Radiat Prot Dosim. 2020;192:473–81. https://doi.org/10.1093/rpd/ncab003.
Dobbins III JT. Effects of undersampling on the proper interpretation of modulation transfer function, noise power spectra, and noise equivalent quanta of digital imaging systems. Med Phys. 1995;22(2):171–81. https://doi.org/10.1118/1.597600.
Mackenzie A, Honey ID. Characterization of noise sources for two generations of computed radiography systems using powder and crystalline photostimulable phosphors. Med Phys. 2007;34(8):3345–57. https://doi.org/10.1118/1.2750973.
Sakurai N, Takahashi S, Kodama N. Study of profile analysis on the simulated tumor and visibility evaluation in lung area using Bone Suppression Processing. JART. 2017;64:1433–9 (in Japanese).
Tanaka R, Matsumoto I, Tamura M, et al. Comparison of dynamic flat-panel detector-based chest radiography with nuclear medicine ventilation-perfusion imaging for the evaluation of pulmonary function: a clinical validation study. Med Phys. 2020;47(10):4800–9. https://doi.org/10.1002/mp.14407.
Article CAS PubMed Google Scholar
Ice J, Yao S. An Analysis of Canon Intelligent Noise Reduction Processing Applied to Pediatric Digital Radiographs. In: Clinical White Paper. CANON. https://mcu.canon/products/details/digital-radiography-fluoroscopy/software-solutions/intelligent-noise-reduction/intelligent-noise-reduction.html. Accessed 30 July 2024.
Samei E, Dobbins III JT, Lo JY, et al. A framework for optimising the radiographic technique in digital X-ray imaging. Radiat Prot Dosim. 2005;114:220–9. https://doi.org/10.1093/rpd/nch562.
Japan Network for Research and Information on Medical Exposure s(J-RIME). National diagnostic reference levelsin Japan–Japan DRLs 2020–. 2020.
Kawashima H, Ichikawa K, Kunitomo H. Relationship between radiation quality and image quality in digital chest radiography: validation study using human soft tissue-equivalent phantom. Jpn J Radiol Technol. 2021;77(3):255–62. https://doi.org/10.6009/jjrt.2021_JSRT_77.3.255. (in Japanese).
Seltzer SM, Hubbell JH. Tables and graphs of photon mass attenuation coefficients and mass energy-absorption coefficients for photon energies 1 keV to 20 MeV for elements Z=1 to 92 and some dosimetric materials. Kyoto: Japanese society of radiological technology; 1995.
留言 (0)