Comprehensive image quality comparison of conventional and new flat panel detectors under bedside chest radiography beam conditions

Kishimoto K, Ariga E, Ishigaki R, et al. Study of appropriate dosing in consideration of image quality and patient dose on the digital radiography. Jpn J Radiol Technol. 2011;67(11):1381–97. https://doi.org/10.6009/jjrt.67.1381. (in Japanese).

Article  Google Scholar 

Samei E, Flynn MJ. An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys. 2003;30(4):608–22. https://doi.org/10.1118/1.1561285.

Article  PubMed  Google Scholar 

Samei E, Murphy S, Christianson O. Detector or system? Extending the concept of detective quantum efficiency to characterize the performance of digital radiographic imaging systems. Radiology. 2008;249(3):926–37. https://doi.org/10.1148/radiol.2492071734.

Article  PubMed  PubMed Central  Google Scholar 

Rivetti S, Lanconelli N, Campanini R, et al. Comparison of different commercial FFDM units by means of physical characterization and contrast-detail analysis. Med Phys. 2006;33(11):4198–209. https://doi.org/10.1118/1.2358195.

Article  PubMed  Google Scholar 

Monnin P, Gutierrez D, Bulling S, Guntern D, Verdun FR. A comparison of the performance of digital mammography systems. Med Phys. 2007;34(3):906–15. https://doi.org/10.1118/1.2432072.

Article  CAS  PubMed  Google Scholar 

Kim HK, Cunningham IA, Yin Z, Cho G. On the development of digital radiography detectors: A review. Int J Precision Eng Manuf. 2008;9(4):86–100.

Google Scholar 

Marshall NW, Smet M, Hofmans M, Pauwels H, Clercq TD, Bosmans H. Technical characterization of five x-ray detectors for pediatric radiography applications. Phys Med Biol. 2017;62:N573–86. https://doi.org/10.1088/1361-6560/aa9599.

Article  CAS  PubMed  Google Scholar 

Negishi T, Koba Y, Shinsho K, et al. Data analysis of average glandular dose in mammography toward revision of the diagnostic reference level of Japan. Radiol Phys Technol. 2024. https://doi.org/10.1007/s12194-024-00823-9.

Article  PubMed  Google Scholar 

Beutal J, Kundel HL, Matter RL. Handbook of medical imaging, volume 1. Physics and psychophysics. Bellingham: SPIE press; 2000.

Google Scholar 

Samei E, Murphy S, Christianson O. DQE of wireless digital detectors: Comparative performance with differing filtration schemes. Med Phys. 2013;40(8): 081910. https://doi.org/10.1118/1.4813298.

Article  PubMed  Google Scholar 

Rivetti S, Lanconelli N, Bertolini M, Nitrosi A, Burani A. Characterization of a clinical unit for digital radiography based on irradiation side sampling technology. Med Phys. 2013;40(10): 101902. https://doi.org/10.1118/1.4820364.

Article  CAS  PubMed  Google Scholar 

Tanaka N, Yano Y, Yabuuchi H, et al. Basic imaging properties of an indirect flat-panel detector system employing irradiation side sampling (ISS) technology for chest radiography: comparison with a computed radiographic system. Radiol Phys Technol. 2013;6:162–9. https://doi.org/10.1007/s12194-012-0184-z.

Article  PubMed  Google Scholar 

Shi L, Lu M, Bennett NR, et al. Characterization and potential applications of a dual-layer flat-panel detector. Med Phys. 2020;47(8):3332–43. https://doi.org/10.1002/mp.14211.

Article  CAS  PubMed  Google Scholar 

Mogami H, Onoike Y, Miyano H, et al. Lung cancer screening by single-shot dual-energy subtraction using flat-panel detector. Jpn J Radiol. 2021;39:1168–73. https://doi.org/10.1007/s11604-021-01163-z.

Article  PubMed  PubMed Central  Google Scholar 

CANON Medical Systems. CXDI-Elite. https://jp.medical.canon/products/xray/cxdi-elite. Accessed 30 July 2024.

Hayashi Y. Digital radiography system “CXDI-Elite” with built-in automatic exposure detection function. JIRA Technical Report. 2023;33(1):10–1 (in Japanese).

Google Scholar 

International Electrotechnical Commission (IEC). Medical electrical equipment—Part 2–54: Particular requirements for the basic safety and essential performance of X-ray equipment for radiography and radioscopy. IEC 60601–2–54; 2022.

International Electrotechnical Commission (IEC). Medical diagnostic X-ray equipment—Radiation conditions for use in the determination of characteristics. IEC 61267; 2005.

Ono T, Ichikawa H, Kato T. Evaluation of Detectability for Patient’s Movement in Portable Chest Radiography: Comparison of Visual Detection and Motion Detection Software. Jpn J Radiol Technol. 2022;78(8):838–45. https://doi.org/10.6009/jjrt.2022-1237. (in Japanese).

Article  Google Scholar 

Ichikawa K, Ishida T. Image quality measurement of digital radiography. Tokyo: Ohmsha; 2010.

Google Scholar 

International Electrotechnical Commission (IEC). Medical electrical equipment—Characteristics of digital X-ray imaging devices—Part 1–1: Determination of the detective quantum efficiency - Detectors used in radiographic imaging. IEC 62220–1–1; 2015.

Maruyama S. Visualization of blurring process due to analog components in a digital radiography system using a simple method. Phys Eng Sci Med. 2020;43:1461–8. https://doi.org/10.1007/s13246-020-00939-3.

Article  PubMed  Google Scholar 

Zhao W, Rowlands JA. Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency. Med Phys. 1997;24(12):1819–33. https://doi.org/10.1118/1.598097.

Article  CAS  PubMed  Google Scholar 

Maruyama S, Shimosegawa M. Verification of the influence of the sampling aperture on the digital noise power spectrum. EPOS. 2020. https://doi.org/10.26044/ecr2020/C-04596.

Article  Google Scholar 

Maruyama S. Exposure dose index based on noise factor analysis in digital mammography: verification using direct-type flat-panel detector system. Radiat Prot Dosim. 2020;192:473–81. https://doi.org/10.1093/rpd/ncab003.

Article  Google Scholar 

Dobbins III JT. Effects of undersampling on the proper interpretation of modulation transfer function, noise power spectra, and noise equivalent quanta of digital imaging systems. Med Phys. 1995;22(2):171–81. https://doi.org/10.1118/1.597600.

Article  Google Scholar 

Mackenzie A, Honey ID. Characterization of noise sources for two generations of computed radiography systems using powder and crystalline photostimulable phosphors. Med Phys. 2007;34(8):3345–57. https://doi.org/10.1118/1.2750973.

Article  PubMed  Google Scholar 

Sakurai N, Takahashi S, Kodama N. Study of profile analysis on the simulated tumor and visibility evaluation in lung area using Bone Suppression Processing. JART. 2017;64:1433–9 (in Japanese).

Google Scholar 

Tanaka R, Matsumoto I, Tamura M, et al. Comparison of dynamic flat-panel detector-based chest radiography with nuclear medicine ventilation-perfusion imaging for the evaluation of pulmonary function: a clinical validation study. Med Phys. 2020;47(10):4800–9. https://doi.org/10.1002/mp.14407.

Article  CAS  PubMed  Google Scholar 

Ice J, Yao S. An Analysis of Canon Intelligent Noise Reduction Processing Applied to Pediatric Digital Radiographs. In: Clinical White Paper. CANON. https://mcu.canon/products/details/digital-radiography-fluoroscopy/software-solutions/intelligent-noise-reduction/intelligent-noise-reduction.html. Accessed 30 July 2024.

Samei E, Dobbins III JT, Lo JY, et al. A framework for optimising the radiographic technique in digital X-ray imaging. Radiat Prot Dosim. 2005;114:220–9. https://doi.org/10.1093/rpd/nch562.

Article  Google Scholar 

Japan Network for Research and Information on Medical Exposure s(J-RIME). National diagnostic reference levelsin Japan–Japan DRLs 2020–. 2020.

Kawashima H, Ichikawa K, Kunitomo H. Relationship between radiation quality and image quality in digital chest radiography: validation study using human soft tissue-equivalent phantom. Jpn J Radiol Technol. 2021;77(3):255–62. https://doi.org/10.6009/jjrt.2021_JSRT_77.3.255. (in Japanese).

Article  CAS  Google Scholar 

Seltzer SM, Hubbell JH. Tables and graphs of photon mass attenuation coefficients and mass energy-absorption coefficients for photon energies 1 keV to 20 MeV for elements Z=1 to 92 and some dosimetric materials. Kyoto: Japanese society of radiological technology; 1995.

Google Scholar 

留言 (0)

沒有登入
gif