Artificial intelligence in fracture detection on radiographs: a literature review

Luchini C, Pea A, Scarpa A. Artificial intelligence in oncology: current applications and future perspectives. Br J Cancer. 2022. https://doi.org/10.1038/s41416-021-01633-1.

Article  PubMed  PubMed Central  Google Scholar 

Lotter W, Hassett MJ, Schultz N, Kehl KL, Van Allen EM, Cerami E. Artificial intelligence in oncology: current landscape, challenges, and future directions. Cancer Discov. 2024. https://doi.org/10.1158/2159-8290.CD-23-1199.

Article  PubMed  PubMed Central  Google Scholar 

Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020. https://doi.org/10.1111/cas.14377.

Article  PubMed  PubMed Central  Google Scholar 

Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 2021. https://doi.org/10.1158/2159-8290.CD-21-0090.

Article  PubMed  PubMed Central  Google Scholar 

Vicini S, Bortolotto C, Rengo M, Ballerini D, Bellini D, Carbone I, et al. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: focus on the three most common cancers. Radiol Med. 2022. https://doi.org/10.1007/s11547-022-01512-6.

Article  PubMed  Google Scholar 

Voigtlaender S, Pawelczyk J, Geiger M, Vaios EJ, Karschnia P, Cudkowicz M, et al. Artificial intelligence in neurology: opportunities, challenges, and policy implications. J Neurol. 2024. https://doi.org/10.1007/s00415-024-12220-8.

Article  PubMed  Google Scholar 

Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol. 2023. https://doi.org/10.1016/j.semcancer.2023.03.006.

Article  PubMed  Google Scholar 

Sollee J, Tang L, Igiraneza AB, Xiao B, Bai HX, Yang L. Artificial intelligence for medical image analysis in epilepsy. Epilepsy Res. 2022. https://doi.org/10.1016/j.eplepsyres.2022.106861.

Article  PubMed  Google Scholar 

Pacchiano F, Tortora M, Criscuolo S, Jaber K, Acierno P, De Simone M, et al. Artificial intelligence applied in acute ischemic stroke: from child to elderly. Radiol Med. 2024. https://doi.org/10.1007/s11547-023-01735-1.

Article  PubMed  Google Scholar 

Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018. https://doi.org/10.1016/j.jacc.2018.03.521.

Article  PubMed  Google Scholar 

Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur Heart J. 2021. https://doi.org/10.1093/eurheartj/ehab544.

Article  PubMed  PubMed Central  Google Scholar 

Yasmin F, Shah SMI, Naeem A, Shujauddin SM, Jabeen A, Kazmi S, et al. Artificial intelligence in the diagnosis and detection of heart failure: the past, present, and future. Rev Cardiovasc Med. 2021. https://doi.org/10.31083/j.rcm2204121.

Article  PubMed  Google Scholar 

Yang W, Chen C, Yang Y, Chen L, Yang C, Gong L, et al. Diagnostic performance of deep learning-based vessel extraction and stenosis detection on coronary computed tomography angiography for coronary artery disease: a multi-reader multi-case study. Radiol Med. 2023. https://doi.org/10.1007/s11547-023-01606-9.

Article  PubMed  PubMed Central  Google Scholar 

Kallini JR, Moriarty JM. Artificial intelligence in interventional radiology. Semin Intervent Radiol. 2022. https://doi.org/10.1055/s-0042-1753524.

Article  PubMed  PubMed Central  Google Scholar 

Abajian A, Murali N, Savic LJ, Laage-Gaupp FM, Nezami N, Duncan JS, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept. J Vasc Interv Radiol. 2018. https://doi.org/10.1016/j.jvir.2018.01.769.

Article  PubMed  PubMed Central  Google Scholar 

Zhong BY, Ni CF, Ji JS, Yin GW, Chen L, Zhu HD, et al. Nomogram and artificial neural network for prognostic performance on the Albumin-Bilirubin grade for hepatocellular carcinoma undergoing transarterial chemoembolization. J Vasc Interv Radiol. 2019. https://doi.org/10.1016/j.jvir.2018.08.026.

Article  PubMed  Google Scholar 

Yang Y, Huan X, Guo D, Wang X, Niu S, Li K. Performance of deep learning-based autodetection of arterial stenosis on head and neck CT angiography: an independent external validation study. Radiol Med. 2023. https://doi.org/10.1007/s11547-023-01683-w.

Article  PubMed  PubMed Central  Google Scholar 

D’Amore B, Smolinski-Zhao S, Daye D, Uppot RN. Role of machine learning and artificial intelligence in interventional oncology. Curr Oncol Rep. 2021. https://doi.org/10.1007/s11912-021-01054-6.

Article  PubMed  Google Scholar 

Wang C, Zhu X, Hong JC, Zheng D. Artificial intelligence in radiotherapy treatment planning: present and future. Technol Cancer Res Treat. 2019. https://doi.org/10.1177/1533033819873922.

Article  PubMed  PubMed Central  Google Scholar 

de Biase A, Sourlos N, van Ooijen PMA. Standardization of artificial intelligence development in radiotherapy. Semin Radiat Oncol. 2022. https://doi.org/10.1016/j.semradonc.2022.06.010.

Article  PubMed  Google Scholar 

Sheng K. Artificial intelligence in radiotherapy: a technological review. Front Med. 2020. https://doi.org/10.1007/s11684-020-0761-1.

Article  PubMed  Google Scholar 

Boldrini L, D’Aviero A, De Felice F, Desideri I, Grassi R, Greco C, et al. Artificial intelligence applied to image-guided radiation therapy (IGRT): a systematic review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO). Radiol Med. 2024. https://doi.org/10.1007/s11547-023-01708-4.

Article  PubMed  PubMed Central  Google Scholar 

Fusco R, Piccirillo A, Sansone M, Granata V, Rubulotta MR, Petrosino T, et al. Radiomics and artificial intelligence analysis with textural metrics extracted by contrast-enhanced mammography in the breast lesions classification. Diagnostics (Basel). 2021. https://doi.org/10.3390/diagnostics11050815.

Article  PubMed  PubMed Central  Google Scholar 

Guldogan N, Taskin F, Icten GE, Yilmaz E, Turk EB, Erdemli S, et al. Artificial intelligence in BI-RADS categorization of breast lesions on ultrasound: can we omit excessive follow-ups and biopsies? Acad Radiol. 2024. https://doi.org/10.1016/j.acra.2023.11.031.

Article  PubMed  Google Scholar 

Mundinger A, Mundinger C. Artificial intelligence in senology—where do we stand and what are the future horizons? Eur J Breast Health. 2024. https://doi.org/10.4274/ejbh.galenos.2024.2023-12-13.

Article  PubMed  PubMed Central  Google Scholar 

Bassi E, Russo A, Oliboni E, Zamboni F, De Santis C, Mansueto G, et al. The role of an artificial intelligence software in clinical senology: a mammography multi-reader study. Radiol Med. 2024. https://doi.org/10.1007/s11547-023-01751-1.

Article  PubMed  Google Scholar 

Fusco R, Di Bernardo E, Piccirillo A, Rubulotta MR, Petrosino T, Barretta ML, et al. Radiomic and artificial intelligence analysis with textural metrics extracted by contrast-enhanced mammography and dynamic contrast magnetic resonance imaging to detect breast malignant lesions. Curr Oncol. 2022. https://doi.org/10.3390/curroncol29030159.

Article  PubMed  PubMed Central  Google Scholar 

Angelini E, Shah A. Using artificial intelligence in fungal lung disease: CPA CT imaging as an example. Mycopathologia. 2021. https://doi.org/10.1007/s11046-021-00546-0.

Article  PubMed  PubMed Central  Google Scholar 

Cheng K, Li Z, He Y, Guo Q, Lu Y, Gu S, et al. Potential use of artificial intelligence in infectious disease: take ChatGPT as an example. Ann Biomed Eng. 2023. https://doi.org/10.1007/s10439-023-03203-3.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif