Luchini C, Pea A, Scarpa A. Artificial intelligence in oncology: current applications and future perspectives. Br J Cancer. 2022. https://doi.org/10.1038/s41416-021-01633-1.
Article PubMed PubMed Central Google Scholar
Lotter W, Hassett MJ, Schultz N, Kehl KL, Van Allen EM, Cerami E. Artificial intelligence in oncology: current landscape, challenges, and future directions. Cancer Discov. 2024. https://doi.org/10.1158/2159-8290.CD-23-1199.
Article PubMed PubMed Central Google Scholar
Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020. https://doi.org/10.1111/cas.14377.
Article PubMed PubMed Central Google Scholar
Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 2021. https://doi.org/10.1158/2159-8290.CD-21-0090.
Article PubMed PubMed Central Google Scholar
Vicini S, Bortolotto C, Rengo M, Ballerini D, Bellini D, Carbone I, et al. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: focus on the three most common cancers. Radiol Med. 2022. https://doi.org/10.1007/s11547-022-01512-6.
Voigtlaender S, Pawelczyk J, Geiger M, Vaios EJ, Karschnia P, Cudkowicz M, et al. Artificial intelligence in neurology: opportunities, challenges, and policy implications. J Neurol. 2024. https://doi.org/10.1007/s00415-024-12220-8.
Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol. 2023. https://doi.org/10.1016/j.semcancer.2023.03.006.
Sollee J, Tang L, Igiraneza AB, Xiao B, Bai HX, Yang L. Artificial intelligence for medical image analysis in epilepsy. Epilepsy Res. 2022. https://doi.org/10.1016/j.eplepsyres.2022.106861.
Pacchiano F, Tortora M, Criscuolo S, Jaber K, Acierno P, De Simone M, et al. Artificial intelligence applied in acute ischemic stroke: from child to elderly. Radiol Med. 2024. https://doi.org/10.1007/s11547-023-01735-1.
Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018. https://doi.org/10.1016/j.jacc.2018.03.521.
Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur Heart J. 2021. https://doi.org/10.1093/eurheartj/ehab544.
Article PubMed PubMed Central Google Scholar
Yasmin F, Shah SMI, Naeem A, Shujauddin SM, Jabeen A, Kazmi S, et al. Artificial intelligence in the diagnosis and detection of heart failure: the past, present, and future. Rev Cardiovasc Med. 2021. https://doi.org/10.31083/j.rcm2204121.
Yang W, Chen C, Yang Y, Chen L, Yang C, Gong L, et al. Diagnostic performance of deep learning-based vessel extraction and stenosis detection on coronary computed tomography angiography for coronary artery disease: a multi-reader multi-case study. Radiol Med. 2023. https://doi.org/10.1007/s11547-023-01606-9.
Article PubMed PubMed Central Google Scholar
Kallini JR, Moriarty JM. Artificial intelligence in interventional radiology. Semin Intervent Radiol. 2022. https://doi.org/10.1055/s-0042-1753524.
Article PubMed PubMed Central Google Scholar
Abajian A, Murali N, Savic LJ, Laage-Gaupp FM, Nezami N, Duncan JS, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept. J Vasc Interv Radiol. 2018. https://doi.org/10.1016/j.jvir.2018.01.769.
Article PubMed PubMed Central Google Scholar
Zhong BY, Ni CF, Ji JS, Yin GW, Chen L, Zhu HD, et al. Nomogram and artificial neural network for prognostic performance on the Albumin-Bilirubin grade for hepatocellular carcinoma undergoing transarterial chemoembolization. J Vasc Interv Radiol. 2019. https://doi.org/10.1016/j.jvir.2018.08.026.
Yang Y, Huan X, Guo D, Wang X, Niu S, Li K. Performance of deep learning-based autodetection of arterial stenosis on head and neck CT angiography: an independent external validation study. Radiol Med. 2023. https://doi.org/10.1007/s11547-023-01683-w.
Article PubMed PubMed Central Google Scholar
D’Amore B, Smolinski-Zhao S, Daye D, Uppot RN. Role of machine learning and artificial intelligence in interventional oncology. Curr Oncol Rep. 2021. https://doi.org/10.1007/s11912-021-01054-6.
Wang C, Zhu X, Hong JC, Zheng D. Artificial intelligence in radiotherapy treatment planning: present and future. Technol Cancer Res Treat. 2019. https://doi.org/10.1177/1533033819873922.
Article PubMed PubMed Central Google Scholar
de Biase A, Sourlos N, van Ooijen PMA. Standardization of artificial intelligence development in radiotherapy. Semin Radiat Oncol. 2022. https://doi.org/10.1016/j.semradonc.2022.06.010.
Sheng K. Artificial intelligence in radiotherapy: a technological review. Front Med. 2020. https://doi.org/10.1007/s11684-020-0761-1.
Boldrini L, D’Aviero A, De Felice F, Desideri I, Grassi R, Greco C, et al. Artificial intelligence applied to image-guided radiation therapy (IGRT): a systematic review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO). Radiol Med. 2024. https://doi.org/10.1007/s11547-023-01708-4.
Article PubMed PubMed Central Google Scholar
Fusco R, Piccirillo A, Sansone M, Granata V, Rubulotta MR, Petrosino T, et al. Radiomics and artificial intelligence analysis with textural metrics extracted by contrast-enhanced mammography in the breast lesions classification. Diagnostics (Basel). 2021. https://doi.org/10.3390/diagnostics11050815.
Article PubMed PubMed Central Google Scholar
Guldogan N, Taskin F, Icten GE, Yilmaz E, Turk EB, Erdemli S, et al. Artificial intelligence in BI-RADS categorization of breast lesions on ultrasound: can we omit excessive follow-ups and biopsies? Acad Radiol. 2024. https://doi.org/10.1016/j.acra.2023.11.031.
Mundinger A, Mundinger C. Artificial intelligence in senology—where do we stand and what are the future horizons? Eur J Breast Health. 2024. https://doi.org/10.4274/ejbh.galenos.2024.2023-12-13.
Article PubMed PubMed Central Google Scholar
Bassi E, Russo A, Oliboni E, Zamboni F, De Santis C, Mansueto G, et al. The role of an artificial intelligence software in clinical senology: a mammography multi-reader study. Radiol Med. 2024. https://doi.org/10.1007/s11547-023-01751-1.
Fusco R, Di Bernardo E, Piccirillo A, Rubulotta MR, Petrosino T, Barretta ML, et al. Radiomic and artificial intelligence analysis with textural metrics extracted by contrast-enhanced mammography and dynamic contrast magnetic resonance imaging to detect breast malignant lesions. Curr Oncol. 2022. https://doi.org/10.3390/curroncol29030159.
Article PubMed PubMed Central Google Scholar
Angelini E, Shah A. Using artificial intelligence in fungal lung disease: CPA CT imaging as an example. Mycopathologia. 2021. https://doi.org/10.1007/s11046-021-00546-0.
Article PubMed PubMed Central Google Scholar
Cheng K, Li Z, He Y, Guo Q, Lu Y, Gu S, et al. Potential use of artificial intelligence in infectious disease: take ChatGPT as an example. Ann Biomed Eng. 2023. https://doi.org/10.1007/s10439-023-03203-3.
留言 (0)