Soffietti R, Ruda R, Mutani R. Management of brain metastases. J Neurol. 2002;249:1357–69.
Arnold SM, Patchell RA. Diagnosis and management of brain metastases. Hematol Oncol Clin N Am. 2001;15:1085–107.
Xue J, Kubicek GJ, Yorke E, et al. Biological implications of whole-brain radiotherapy versus stereotactic radiosurgery of multiple brain metastases. J Neurosurg. 2014;121:60–8.
Patil CG, Pricola K, Garg SK, Bryant A, Black KL. Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases. Cochrane Database Syst Rev. 2012;9:CD006121.
Pham A, Lee B, Chang EL. Stereotactic radiosurgery for multiple brain metastases: two cases of preserved quality of life. Cureus. 2017;9:e1995.
PubMed PubMed Central Google Scholar
Yamamoto M, Serizawa T, Shuto T, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15:387–95.
Andrews DW, Scott CB, Sperduto PW, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet. 2004;363:1665–72.
Lai Y, Chen S, et al. Dosimetric superiority of flattening filter free beams for single-fraction stereotactic radiosurgery in single brain metastasis. Oncotarget. 2016;8:35272–9.
Article PubMed Central Google Scholar
Dhabaan A, Schreibmann E, et al. Six degrees of freedom CBCT-based positioning for intracranial targets treated with frameless stereotactic radiosurgery. J Appl Clin Med Phys. 2012;13:3916.
Chang Z, Wang Z, Wu QJ, et al. Dosimetric characteristics of novalis Tx system with high definition multileaf collimator. Med Phys. 2008;35:4460–3.
Zhang S, Yang R, et al. Noncoplanar VMAT for brain metastases: a plan quality and delivery efficiency comparison with coplanar VMAT, IMRT, and cyberKnife. Technol Cancer Res Treat. 2019;18:1533033819871621.
Article CAS PubMed PubMed Central Google Scholar
Blonigen BJ, Steinmetz RD, et al. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77(4):996–1001.
Ohira S, Ueda Y, et al. HyperArc VMAT planning for single and multiple brain metastases stereotactic radiosurgery: a new treatment planning approach. Radiat Oncol. 2018;13(1):13.
Article PubMed PubMed Central Google Scholar
Ruggieri R, Naccarato S, et al. Linac-based VMAT radiosurgery for multiple brain lesions: comparison between a conventional multi-isocenter approach and a new dedicated mono-isocenter technique. Radiat Oncol. 2018;13(1):38.
Article PubMed PubMed Central Google Scholar
Slosarek K, Bekman B, et al. In silico assessment of the dosimetric quality of a novel, automated radiation treatment planning strategy for linac-based radiosurgery of multiple brain metastases and a comparison with robotic methods. Radiat Oncol. 2018;13(1):41.
Article PubMed PubMed Central Google Scholar
Kadoya N, Abe Y, et al. Automated noncoplanar treatment planning strategy in stereotactic radiosurgery of multiple cranial metastases: HyperArc and CyberKnife dose distributions. Med Dosim. 2019;44(4):394–400.
Ueda Y, Ohira S, et al. Dosimetric performance of two linear accelerator-based radiosurgery systems to treat single and multiplebrain metastases. Br J Radiol. 2019;92(1100):20190004.
Article PubMed PubMed Central Google Scholar
Vergalasova I, Liu H, et al. Multi-institutional dosimetric evaluation of modern day stereotactic radiosurgery (SRS) treatment options for multiple brain metastases. Front Oncol. 2019;9:483.
Article PubMed PubMed Central Google Scholar
Varian Medical System. Eclipse photon and electron algorithms reference guide. Palo Alto: Varian Medical Systems, Inc.; 2015.
Dimitriadis A, Paddick I. A novel index for assessing treatment plan quality in stereotactic radiosurgery. J Neurosurg. 2018;129:118–24.
Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105:194–201.
Xu L, Xu Y, et al. A new homogeneity index definition for evaluation of radiotherapy plans. J Appl Clin Med Phys. 2019;20(11):50–6.
Article PubMed PubMed Central Google Scholar
Balaji K, Ramasubramanian V. Integrated scoring approach to assess radiotherapy plan quality for breast cancer treatment. Rep Pract Oncol Radiother. 2022;27(4):707–16.
Article PubMed PubMed Central Google Scholar
Xia Y, Adamson J, Zlateva Y, Giles W. Application of TG-218 action limits to SRS and SBRT pre-treatment patient specific QA. J Radiosurg SBRT. 2020;7(2):135–47.
PubMed PubMed Central Google Scholar
Muthu S, Mudhana G. Dosimetric systems in pre-treatment QA for stereotactic treatments: correlation agreements and target volume dependency. Asian Pac J Cancer Prev. 2024;25(4):1425–32.
Article PubMed PubMed Central Google Scholar
Bell JP, Patel P, Higgins K, McDonald MW, Roper J. Fine-tuning the normal tissue objective in eclipse for lung stereotactic body radiation therapy. Med Dosim. 2018;43(4):344–50.
Indrayani L, Anam C, Sutanto H, Subroto R, Dougherty G. Normal tissue objective (NTO) tool in Eclipse treatment planning system for dose distribution optimization. Polish J Med Phys Eng. 2022;28(2):99–106.
Huang YY, Yang J, Liu YB. Planning issues on linac-based stereotactic radiotherapy. World J Clin Cases. 2022;10(35):12822–36. https://doi.org/10.12998/wjcc.v10.i35.12822.
Article PubMed PubMed Central Google Scholar
Komiyama R, Ohira S, et al. Intra-fractional patient motion when using the Qfix Encompass immobilization system during HyperArc treatment of patients with brain metastases. J Appl Clin Med Phys. 2021;22(3):254–60.
留言 (0)