AGE-RAGE Axis and Cardiovascular Diseases: Pathophysiologic Mechanisms and Prospects for Clinical Applications

Kharroubi AT, Darwish HM. Diabetes mellitus: the epidemic of the century. World J Diabetes. 2015;6(6):850–67. https://doi.org/10.4239/wjd.v6.i6.850.

Article  PubMed  PubMed Central  Google Scholar 

Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Dis. 2016;7(1):90–110. https://doi.org/10.14336/ad.2015.0702.

Article  PubMed  PubMed Central  Google Scholar 

Gilbert RE, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet (London, England). 2015;385(9982):2107–17. https://doi.org/10.1016/s0140-6736(14)61402-1.

Article  CAS  PubMed  Google Scholar 

Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol. 2016;90:84–93. https://doi.org/10.1016/j.yjmcc.2015.12.011.

Article  CAS  PubMed  Google Scholar 

MacDonald MR, Petrie MC, Varyani F, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J. 2008;29(11):1377–85. https://doi.org/10.1093/eurheartj/ehn153.

Article  PubMed  Google Scholar 

Di Pino A, DeFronzo RA. Insulin resistance and atherosclerosis: implications for insulin-sensitizing agents. Endocr Rev. 2019;40(6):1447–67. https://doi.org/10.1210/er.2018-00141.

Article  PubMed  PubMed Central  Google Scholar 

Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60. https://doi.org/10.1016/j.redox.2018.09.025.

Article  CAS  PubMed  Google Scholar 

Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol. 2018;71(23):2628–39. https://doi.org/10.1016/j.jacc.2018.03.009.

Article  CAS  PubMed  Google Scholar 

Yang PS, Lee SH, Park J, et al. Atrial tissue expression of receptor for advanced glycation end-products (RAGE) and atrial fibrosis in patients with mitral valve disease. Int J Cardiol. 2016;220:1–6. https://doi.org/10.1016/j.ijcard.2016.06.137.

Article  PubMed  Google Scholar 

Kosmopoulos M, Drekolias D, Zavras PD, Piperi C, Papavassiliou AG. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim Biophys Acta. 2019;1865(3):611–9. https://doi.org/10.1016/j.bbadis.2019.01.006.

Article  CAS  Google Scholar 

Liang B, Zhou Z, Yang Z, et al. AGEs-RAGE axis mediates myocardial fibrosis via activation of cardiac fibroblasts induced by autophagy in heart failure. Exp Physiol. 2022;107(8):879–91. https://doi.org/10.1113/ep090042.

Article  CAS  PubMed  Google Scholar 

Park S, Yoon SJ, Tae HJ, Shim CY. RAGE and cardiovascular disease. Front Biosci (Landmark edition). 2011;16(2):486–97. https://doi.org/10.2741/3700.

Article  CAS  Google Scholar 

Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312. https://doi.org/10.3390/cells11081312.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sruthi CR, Raghu KG. Advanced glycation end products and their adverse effects: the role of autophagy. J Biochem Mol Toxicol. 2021;35(4): e22710. https://doi.org/10.1002/jbt.22710.

Article  CAS  PubMed  Google Scholar 

Vistoli G, De Maddis D, Cipak A, et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radical Res. 2013;47(Suppl 1):3–27. https://doi.org/10.3109/10715762.2013.815348.

Article  CAS  Google Scholar 

Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–29. https://doi.org/10.1016/j.redox.2013.12.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saremi A, Howell S, Schwenke DC, et al. Advanced glycation end products, oxidation products, and the extent of atherosclerosis during the VA diabetes trial and follow-up study. Diabetes Care. 2017;40(4):591–8. https://doi.org/10.2337/dc16-1875.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takeuchi M, Sakasai-Sakai A, Takata T, et al. Intracellular toxic AGEs (TAGE) triggers numerous types of cell damage. Biomolecules. 2021;11(3):387. https://doi.org/10.3390/biom11030387.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takata T, Sakasai-Sakai A, Takeuchi M. Intracellular toxic advanced glycation end-products in 1.4E7 cell line induce death with reduction of microtubule-associated protein 1 light chain 3 and p62. Nutrients. 2022;14(2):332. https://doi.org/10.3390/nu14020332.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Son M, Kang WC, Oh S, et al. Advanced glycation end-product (AGE)-albumin from activated macrophage is critical in human mesenchymal stem cells survival and post-ischemic reperfusion injury. Sci Rep. 2017;7(1):11593. https://doi.org/10.1038/s41598-017-11773-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma C, Kaur A, Thind SS, Singh B, Raina S. Advanced glycation end-products (AGEs): an emerging concern for processed food industries. J Food Sci Technol. 2015;52(12):7561–76. https://doi.org/10.1007/s13197-015-1851-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911-16.e12. https://doi.org/10.1016/j.jada.2010.03.018.

Article  PubMed  PubMed Central  Google Scholar 

Takeuchi M. Toxic AGEs (TAGE) theory: a new concept for preventing the development of diseases related to lifestyle. Diabetol Metab Syndr. 2020;12(1):105. https://doi.org/10.1186/s13098-020-00614-3.

Article  PubMed  PubMed Central  Google Scholar 

Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med. 2021;53(2):168–88. https://doi.org/10.1038/s12276-021-00561-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simm A. Protein glycation during aging and in cardiovascular disease. J Proteomics. 2013;92:248–59. https://doi.org/10.1016/j.jprot.2013.05.012.

Article  CAS  PubMed  Google Scholar 

Deluyker D, Ferferieva V, Noben JP, et al. Cross-linking versus RAGE: How do high molecular weight advanced glycation products induce cardiac dysfunction? Int J Cardiol. 2016;210:100–8. https://doi.org/10.1016/j.ijcard.2016.02.095.

Article  PubMed  Google Scholar 

Zhuang A, Forbes JM. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)? Glycoconj J. 2016;33(4):645–52. https://doi.org/10.1007/s10719-016-9693-z.

Article  CAS  PubMed  Google Scholar 

Lu C, He JC, Cai W, et al. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci USA. 2004;101(32):11767–72. https://doi.org/10.1073/pnas.0401588101.

Article 

留言 (0)

沒有登入
gif