Kharroubi AT, Darwish HM. Diabetes mellitus: the epidemic of the century. World J Diabetes. 2015;6(6):850–67. https://doi.org/10.4239/wjd.v6.i6.850.
Article PubMed PubMed Central Google Scholar
Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Dis. 2016;7(1):90–110. https://doi.org/10.14336/ad.2015.0702.
Article PubMed PubMed Central Google Scholar
Gilbert RE, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet (London, England). 2015;385(9982):2107–17. https://doi.org/10.1016/s0140-6736(14)61402-1.
Article CAS PubMed Google Scholar
Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol. 2016;90:84–93. https://doi.org/10.1016/j.yjmcc.2015.12.011.
Article CAS PubMed Google Scholar
MacDonald MR, Petrie MC, Varyani F, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J. 2008;29(11):1377–85. https://doi.org/10.1093/eurheartj/ehn153.
Di Pino A, DeFronzo RA. Insulin resistance and atherosclerosis: implications for insulin-sensitizing agents. Endocr Rev. 2019;40(6):1447–67. https://doi.org/10.1210/er.2018-00141.
Article PubMed PubMed Central Google Scholar
Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60. https://doi.org/10.1016/j.redox.2018.09.025.
Article CAS PubMed Google Scholar
Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol. 2018;71(23):2628–39. https://doi.org/10.1016/j.jacc.2018.03.009.
Article CAS PubMed Google Scholar
Yang PS, Lee SH, Park J, et al. Atrial tissue expression of receptor for advanced glycation end-products (RAGE) and atrial fibrosis in patients with mitral valve disease. Int J Cardiol. 2016;220:1–6. https://doi.org/10.1016/j.ijcard.2016.06.137.
Kosmopoulos M, Drekolias D, Zavras PD, Piperi C, Papavassiliou AG. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim Biophys Acta. 2019;1865(3):611–9. https://doi.org/10.1016/j.bbadis.2019.01.006.
Liang B, Zhou Z, Yang Z, et al. AGEs-RAGE axis mediates myocardial fibrosis via activation of cardiac fibroblasts induced by autophagy in heart failure. Exp Physiol. 2022;107(8):879–91. https://doi.org/10.1113/ep090042.
Article CAS PubMed Google Scholar
Park S, Yoon SJ, Tae HJ, Shim CY. RAGE and cardiovascular disease. Front Biosci (Landmark edition). 2011;16(2):486–97. https://doi.org/10.2741/3700.
Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312. https://doi.org/10.3390/cells11081312.
Article CAS PubMed PubMed Central Google Scholar
Sruthi CR, Raghu KG. Advanced glycation end products and their adverse effects: the role of autophagy. J Biochem Mol Toxicol. 2021;35(4): e22710. https://doi.org/10.1002/jbt.22710.
Article CAS PubMed Google Scholar
Vistoli G, De Maddis D, Cipak A, et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radical Res. 2013;47(Suppl 1):3–27. https://doi.org/10.3109/10715762.2013.815348.
Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–29. https://doi.org/10.1016/j.redox.2013.12.016.
Article CAS PubMed PubMed Central Google Scholar
Saremi A, Howell S, Schwenke DC, et al. Advanced glycation end products, oxidation products, and the extent of atherosclerosis during the VA diabetes trial and follow-up study. Diabetes Care. 2017;40(4):591–8. https://doi.org/10.2337/dc16-1875.
Article CAS PubMed PubMed Central Google Scholar
Takeuchi M, Sakasai-Sakai A, Takata T, et al. Intracellular toxic AGEs (TAGE) triggers numerous types of cell damage. Biomolecules. 2021;11(3):387. https://doi.org/10.3390/biom11030387.
Article CAS PubMed PubMed Central Google Scholar
Takata T, Sakasai-Sakai A, Takeuchi M. Intracellular toxic advanced glycation end-products in 1.4E7 cell line induce death with reduction of microtubule-associated protein 1 light chain 3 and p62. Nutrients. 2022;14(2):332. https://doi.org/10.3390/nu14020332.
Article CAS PubMed PubMed Central Google Scholar
Son M, Kang WC, Oh S, et al. Advanced glycation end-product (AGE)-albumin from activated macrophage is critical in human mesenchymal stem cells survival and post-ischemic reperfusion injury. Sci Rep. 2017;7(1):11593. https://doi.org/10.1038/s41598-017-11773-1.
Article CAS PubMed PubMed Central Google Scholar
Sharma C, Kaur A, Thind SS, Singh B, Raina S. Advanced glycation end-products (AGEs): an emerging concern for processed food industries. J Food Sci Technol. 2015;52(12):7561–76. https://doi.org/10.1007/s13197-015-1851-y.
Article CAS PubMed PubMed Central Google Scholar
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911-16.e12. https://doi.org/10.1016/j.jada.2010.03.018.
Article PubMed PubMed Central Google Scholar
Takeuchi M. Toxic AGEs (TAGE) theory: a new concept for preventing the development of diseases related to lifestyle. Diabetol Metab Syndr. 2020;12(1):105. https://doi.org/10.1186/s13098-020-00614-3.
Article PubMed PubMed Central Google Scholar
Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med. 2021;53(2):168–88. https://doi.org/10.1038/s12276-021-00561-7.
Article CAS PubMed PubMed Central Google Scholar
Simm A. Protein glycation during aging and in cardiovascular disease. J Proteomics. 2013;92:248–59. https://doi.org/10.1016/j.jprot.2013.05.012.
Article CAS PubMed Google Scholar
Deluyker D, Ferferieva V, Noben JP, et al. Cross-linking versus RAGE: How do high molecular weight advanced glycation products induce cardiac dysfunction? Int J Cardiol. 2016;210:100–8. https://doi.org/10.1016/j.ijcard.2016.02.095.
Zhuang A, Forbes JM. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)? Glycoconj J. 2016;33(4):645–52. https://doi.org/10.1007/s10719-016-9693-z.
Article CAS PubMed Google Scholar
Lu C, He JC, Cai W, et al. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci USA. 2004;101(32):11767–72. https://doi.org/10.1073/pnas.0401588101.
留言 (0)