Immune drivers of pain resolution and protection

Jain, A., Hakim, S. & Woolf, C. J. Immune drivers of physiological and pathological pain. J. Exp. Med. 221, e20221687 (2024).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Marchand, F., Perretti, M. & McMahon, S. B. Role of the immune system in chronic pain. Nat. Rev. Neurosci. 6, 521–532 (2005).

Article  PubMed  CAS  Google Scholar 

Yang, J. X. et al. Potential neuroimmune interaction in chronic pain: a review on immune cells in peripheral and central sensitization. Front. Pain. Res. 3, 946846 (2022).

Article  Google Scholar 

Talbot, S., Foster, S. L. & Woolf, C. J. Neuroimmunity: physiology and pathology. Annu. Rev. Immunol. https://doi.org/10.1146/annurev-immunol-041015-055340 (2016).

Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158 (2000).

Article  PubMed  Google Scholar 

Alvarez, P., Bogen, O., Green, P. G. & Levine, J. D. Nociceptor interleukin 10 receptor 1 is critical for muscle analgesia induced by repeated bouts of eccentric exercise in the rat. Pain 158, 1481–1488 (2017).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Laumet, G. et al. Interleukin-10 resolves pain hypersensitivity induced by cisplatin by reversing sensory neuron hyperexcitability. Pain 161, 2344–2352 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Sun, Q. et al. IRG1/itaconate increases IL-10 release to alleviate mechanical and thermal hypersensitivity in mice after nerve injury. Front. Immunol. 13, 1012442 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Üçeyler, N., Topuzoǧlu, T., Schießer, P., Hahnenkamp, S. & Sommer, C. IL-4 deficiency is associated with mechanical hypersensitivity in mice. PLoS ONE 6, e28205 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Celik, M., Labuz, D., Keye, J., Glauben, R. & Machelska, H. IL-4 induces M2 macrophages to produce sustained analgesia via opioids. JCI Insight 5, e133093 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Prado, J. et al. Cytokine receptor clustering in sensory neurons with an engineered cytokine fusion protein triggers unique pain resolution pathways. Proc. Natl Acad. Sci. USA 118, e2009647118 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

Article  PubMed  CAS  Google Scholar 

Xu, Z. Z. et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16, 592–597 (2010).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

Article  PubMed  CAS  Google Scholar 

Defaye, M. et al. Induction of antiviral interferon-stimulated genes by neuronal STING promotes the resolution of pain in mice. J. Clin. Invest. 134, e176474 (2024).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Donnelly, C. R. et al. STING controls nociception via type I interferon signalling in sensory neurons. Nature 591, 275–280 (2021). In this study, the authors found that neuron-intrinsic innate immune signaling via the IFN–STING pathway is important for controlling nociception in mice, and exogenous activation of this pathway suppressed excitability of nociceptors and reduced pain thresholds.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang, K. et al. STING suppresses bone cancer pain via immune and neuronal modulation. Nat. Commun. 12, 4558 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Binshtok, A. M. et al. Nociceptors are interleukin-1β sensors. J. Neurosci. 28, 14062 (2008).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu, X. J. et al. Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Res. 24, 1374–1377 (2014).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jain, A. et al. Nociceptor-immune interactomes reveal insult-specific immune signatures of pain. Nat. Immunol. 25, 1296–1305 (2024).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim, J. H., Park, J. S. & Park, D. Anti-allodynic effect of interleukin 10 in a mouse model of complex regional pain syndrome through reduction of NK1 receptor expression of microglia in the spinal cord. J. Pain. Res. 11, 1729–1741 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mitsui, K. et al. Role of macrophage autophagy in postoperative pain and inflammation in mice. J. Neuroinflammation 20, 102 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

de Souza, S. et al. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. Preprint at bioRxiv https://doi.org/10.1101/2024.08.05.606617 (2024).

Starkl, P. et al. Mast cell-derived BH4 and serotonin are critical mediators of postoperative pain. Sci. Immunol. 9, 98 (2024).

Article  Google Scholar 

Van Der Vlist, M. et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron https://doi.org/10.1016/j.neuron.2021.11.020 (2022).

Fischer, R. et al. TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes. Proc. Natl Acad. Sci. USA 116, 17045–17050 (2019).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hu, R., Zhang, J., Liu, X., Huang, D. & Cao, Y. Q. Low-dose interleukin-2 and regulatory T cell treatments attenuate punctate and dynamic mechanical allodynia in a mouse model of sciatic nerve injury. J. Pain. Res. 14, 893–906 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Austin, P. J., Kim, C. F., Perera, C. J. & Moalem-Taylor, G. Regulatory T cells attenuate neuropathic pain following peripheral nerve injury and experimental autoimmune neuritis. Pain 153, 1916–1931 (2012).

Article  PubMed  CAS  Google Scholar 

Laumet, G., Edralin, J. D., Dantzer, R., Heijnen, C. J. & Kavelaars, A. Cisplatin educates CD8+ T cells to prevent and resolve chemotherapy-induced peripheral neuropathy in mice. Pain 160, 1459–1468 (2019).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Singh, S. K. et al. CD8+ T cell-derived IL-13 increases macrophage IL-10 to resolve neuropathic pain. JCI Insight 7, e154194 (2022).

Parisien, M. et al. Genome-wide association studies with experimental validation identify a protective role for B lymphocytes against chronic post-surgical pain. Br. J. Anaesth. 133, 360–370 (2024).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Parisien, M. et al. Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Sci. Transl. Med. 14, eabj9954 (2022). In individuals with resolved low back pain, there was an enrichment in neutrophil gene signatures compared to those with persistent pain, suggesting neutrophils promote resolution of pain. This was further shown in mice where administration of neutrophils promoted the resolution of inflammatory pain. In addition, the data in this study showed that the chronic use of nonsteroidal anti-inflammatory drugs was associated with persistent pain, which was recapitulated in animals.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Corder, G., Castro, D. C., Bruchas, M. R. & Scherrer, G. Endogenous and exogenous opioids in pain. Annu. Rev. Neurosci. 41, 453–473 (2018).

Article 

留言 (0)

沒有登入
gif