Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013;368(25):2402–14.
Article CAS PubMed Google Scholar
Rodrigues JC, Haas M, Reich HN. IgA nephropathy. Clin J Am Soc Nephrol. 2017;12(4):677–86.
Article CAS PubMed PubMed Central Google Scholar
D’Amico G. Natural history of idiopathic IgA nephropathy: role of clinical and histological prognostic factors. Am J Kidney Dis. 2000;36(2):227–37.
Selvaskandan H, Cheung CK, Muto M, Barratt J. New strategies and perspectives on managing IgA nephropathy. Clin Exp Nephrol. 2019;23(5):577–88.
Article PubMed PubMed Central Google Scholar
Suzuki H. Biomarkers for IgA nephropathy on the basis of multi-hit pathogenesis. Clin Exp Nephrol. 2019;23(1):26–31.
Article CAS PubMed Google Scholar
Schena FP, Cox SN. Biomarkers and Precision Medicine in IgA Nephropathy. Semin Nephrol. 2018;38(5):521–30.
Article CAS PubMed Google Scholar
Yanagawa H, Suzuki H, Suzuki Y, Kiryluk K, Gharavi AG, Matsuoka K, Makita Y, Julian BA, Novak J, Tomino Y. A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS ONE. 2014;9(5):e98081.
Article PubMed PubMed Central Google Scholar
Bandari J, Fuller TW. Turner capital I UiURM, D’Agostino LA: renal biopsy for medical renal disease: indications and contraindications. Can J Urol. 2016;23(1):8121–6.
Wang G, Szeto CC. Quantification of gene expression in urinary sediment for the study of renal diseases. Nephrol (Carlton). 2007;12(5):494–9.
Neuhaus J, Bauer F, Fitzner C, Hilgers RD, Seibert F, Babel N, Doevelaar A, Eitner F, Floege J, Rauen T, et al. Urinary biomarkers in the prediction of prognosis and treatment response in IgA Nephropathy. Kidney Blood Press Res. 2018;43(5):1563–72.
Article CAS PubMed Google Scholar
Fukao Y, Suzuki H, Kim JS, Jeong KH, Makita Y, Kano T, Nihei Y, Nakayama M, Lee M, Kato R et al. Galactose-deficient IgA1 as a candidate urinary marker of IgA Nephropathy. J Clin Med 2022, 11(11).
Selvaskandan H, Shi S, Twaij S, Cheung CK, Barratt J. Monitoring Immune responses in IgA Nephropathy: biomarkers to Guide Management. Front Immunol. 2020;11:572754.
Article CAS PubMed PubMed Central Google Scholar
Zhou LT, Lv LL, Qiu S, Yin Q, Li ZL, Tang TT, Ni LH, Feng Y, Wang B, Ma KL, et al. Bioinformatics-based discovery of the urinary BBOX1 mRNA as a potential biomarker of diabetic kidney disease. J Transl Med. 2019;17(1):59.
Article PubMed PubMed Central Google Scholar
Lee YH, Seo JW, Kim M, Tae D, Seok J, Kim YG, Lee SH, Kim JS, Hwang HS, Jeong KH, et al. Urinary mRNA signatures as predictors of renal function decline in patients with Biopsy-Proven Diabetic kidney disease. Front Endocrinol (Lausanne). 2021;12:774436.
Cao Y, Wang Y, Peng N, Xiao J, Wang S, Fu C. The ratio of urinary TREM-1/TREM-2 mRNA expression in chronic kidney disease and renal fibrosis. Ann Med. 2021;53(1):1010–8.
Keshavarz Shahbaz S, Pourrezagholi F, Nafar M, Ahmadpoor P, Barabadi M, Foroughi F, Hosseinzadeh M, Yekaninejad MS, Amirzargar A. Dynamic variation of kidney injury molecule-1 mRNA and protein expression in blood and urine of renal transplant recipients: a cohort study. Clin Exp Nephrol. 2019;23(10):1235–49.
Article CAS PubMed Google Scholar
Fukuda A, Sato Y, Iwakiri T, Komatsu H, Kikuchi M, Kitamura K, Wiggins RC, Fujimoto S. Urine podocyte mRNAs mark disease activity in IgA nephropathy. Nephrol Dial Transpl. 2015;30(7):1140–50.
Feng Y, Lv LL, Wu WJ, Li ZL, Chen J, Ni HF, Zhou LT, Tang TT, Wang FM, Wang B, et al. Urinary exosomes and Exosomal CCL2 mRNA as biomarkers of active histologic Injury in IgA Nephropathy. Am J Pathol. 2018;188(11):2542–52.
Article CAS PubMed Google Scholar
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.
Article PubMed PubMed Central Google Scholar
Trimarchi H, Barratt J, Cattran DC, Cook HT, Coppo R, Haas M, Liu ZH, Roberts IS, Yuzawa Y, Zhang H, et al. Oxford classification of IgA nephropathy 2016: an update from the IgA nephropathy classification Working Group. Kidney Int. 2017;91(5):1014–21.
Choi JK, Yu U, Kim S, Yoo OJ. Combining multiple microarray studies and modeling interstudy variation. Bioinformatics. 2003;19(Suppl 1):i84–90.
Makita Y, Suzuki H, Kano T, Takahata A, Julian BA, Novak J, Suzuki Y. TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA nephropathy. Kidney Int. 2020;97(2):340–9.
Article CAS PubMed Google Scholar
Gagliardini E, Benigni A, Tomasoni S, Abbate M, Kalluri R, Remuzzi G. Targeted downregulation of extracellular nephrin in human IgA nephropathy. Am J Nephrol. 2003;23(4):277–86.
Article CAS PubMed Google Scholar
Mao J, Zhang Y, Du L, Dai Y, Yang C, Liang L. Expression profile of nephrin, podocin, and CD2AP in Chinese children with MCNS and IgA nephropathy. Pediatr Nephrol. 2006;21(11):1666–75.
Delanghe SE, Speeckaert MM, Segers H, Desmet K, Vande Walle J, Laecke SV, Vanholder R, Delanghe JR. Soluble transferrin receptor in urine, a new biomarker for IgA nephropathy and Henoch-Schonlein purpura nephritis. Clin Biochem. 2013;46(7–8):591–7.
Article CAS PubMed Google Scholar
Eddy S, Mariani LH, Kretzler M. Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat Rev Nephrol. 2020;16(11):657–68.
Cohen CD, Frach K, Schlondorff D, Kretzler M. Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int. 2002;61(1):133–40.
Article CAS PubMed Google Scholar
Geyer SJ. Urinalysis and urinary sediment in patients with renal disease. Clin Lab Med. 1993;13(1):13–20.
Article CAS PubMed Google Scholar
Lorenzo Sellares V. Usefulness of urinary parameters in advanced chronic kidney disease. Nefrologia (Engl Ed). 2019;39(2):124–32.
Sirolli V, Pieroni L, Di Liberato L, Urbani A, Bonomini M. Urinary peptidomic biomarkers in kidney diseases. Int J Mol Sci 2019, 21(1).
Seo JW, Moon H, Kim SY, Moon JY, Jeong KH, Lee YH, Kim YG, Lee TW, Ihm CG, Kim CD, et al. Both absolute and relative quantification of urinary mRNA are useful for non-invasive diagnosis of acute kidney allograft rejection. PLoS ONE. 2017;12(6):e0180045.
Article PubMed PubMed Central Google Scholar
Seo JW, Lee YH, Tae DH, Park SH, Moon JY, Jeong KH, Kim CD, Chung BH, Park JB, Kim YH, et al. Non-invasive diagnosis for Acute rejection using urinary mRNA signature reflecting allograft status in kidney transplantation. Front Immunol. 2021;12:656632.
Article CAS PubMed PubMed Central Google Scholar
Kiryluk K, Novak J, Gharavi AG. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu Rev Med. 2013;64:339–56.
留言 (0)