The Role of Iron in Atherosclerosis and its Association with Related Diseases

Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164–74.

PubMed  PubMed Central  Google Scholar 

Patel M, Ramavataram DV. Non transferrin bound iron: nature, manifestations and analytical approaches for estimation. Indian J Clin Biochem. 2012;27(4):322–32.

Article  PubMed  PubMed Central  Google Scholar 

Brissot P, Le Lan C, Troadec MB, et al. [HFE hemochromatosis: pathogenic and diagnostic approach]. Transfus Clin Biol. 2005;12(2):77–82.

Article  PubMed  Google Scholar 

de Valk B, Addicks MA, Gosriwatana I, Lu S, Hider RC, Marx JJ. Non-transferrin-bound iron is present in serum of hereditary haemochromatosis heterozygotes. Eur J Clin Invest. 2000;30(3):248–51.

Article  PubMed  Google Scholar 

Ward DM, Kaplan J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys Acta. 2012;1823(9):1426–33.

Article  PubMed  PubMed Central  Google Scholar 

Ravasi G, Pelucchi S, Russo A, Mariani R, Piperno A. Ferroportin disease: a novel SLC40A1 mutation. Dig Liver Dis. 2020;52(6):688–90.

Article  PubMed  Google Scholar 

Ravingerová T, Kindernay L, Barteková M, et al. The Molecular mechanisms of Iron Metabolism and its role in Cardiac Dysfunction and Cardioprotection. Int J Mol Sci. 2020;21(21):7889.

Article  PubMed  PubMed Central  Google Scholar 

Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7853):524–33.

Article  PubMed  Google Scholar 

Vinchi F, Porto G, Simmelbauer A, et al. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur Heart J. 2020;41(28):2681–95.

Article  PubMed  Google Scholar 

Yang Z, Shi J, Chen L, Fu C, Shi D, Qu H. Role of Pyroptosis and Ferroptosis in the progression of atherosclerotic plaques. Front Cell Dev Biol. 2022;10:811196.

Article  PubMed  PubMed Central  Google Scholar 

Hu X, Cai X, Ma R, Fu W, Zhang C, Du X. Iron-load exacerbates the severity of atherosclerosis via inducing inflammation and enhancing the glycolysis in macrophages. J Cell Physiol. 2019;234(10):18792–800.

Article  PubMed  Google Scholar 

Tang X, Zhang Z, Fang M, et al. Transferrin plays a central role in coagulation balance by interacting with clotting factors. Cell Res. 2020;30(2):119–32.

Article  PubMed  Google Scholar 

Kautz L, Gabayan V, Wang X, et al. Testing the iron hypothesis in a mouse model of atherosclerosis. Cell Rep. 2013;5(5):1436–42.

Article  PubMed  Google Scholar 

Kirk EA, Heinecke JW, LeBoeuf RC. Iron overload diminishes atherosclerosis in apoe-deficient mice. J Clin Invest. 2001;107(12):1545–53.

Article  PubMed  PubMed Central  Google Scholar 

Demetz E, Tymoszuk P, Hilbe R, et al. The haemochromatosis gene hfe and kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development. Eur Heart J. 2020;41(40):3949–59.

Article  PubMed  Google Scholar 

Marques VB, Leal M, Mageski J, et al. Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: role of oxidative stress and endothelial dysfunction. Life Sci. 2019;233:116702.

Article  PubMed  Google Scholar 

Vinchi F. Non-transferrin-bound Iron in the spotlight: Novel mechanistic insights into the vasculotoxic and atherosclerotic effect of Iron. Antioxid Redox Signal. 2021;35(6):387–414.

Article  PubMed  PubMed Central  Google Scholar 

Xiao FJ, Zhang D, Wu Y, et al. miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem Biophys Res Commun. 2019;515(3):448–54.

Article  PubMed  Google Scholar 

Bai T, Li M, Liu Y, Qiao Z, Wang Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 2020;160:92–102.

Article  PubMed  Google Scholar 

Wang D, Ye P, Kong C, et al. Mitoferrin 2 deficiency prevents mitochondrial iron overload-induced endothelial injury and alleviates atherosclerosis. Exp Cell Res. 2021;402(1):112552.

Article  PubMed  Google Scholar 

Li L, Wang H, Zhang J, Chen X, Zhang Z, Li Q. Effect of endothelial progenitor cell-derived extracellular vesicles on endothelial cell ferroptosis and atherosclerotic vascular endothelial injury. Cell Death Discov. 2021;7(1):235.

Article  PubMed  PubMed Central  Google Scholar 

Zhao X, Tan F, Cao X, et al. PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 2020;52(1):9–17.

Article  PubMed  Google Scholar 

Kawada S, Nagasawa Y, Kawabe M, et al. Iron-induced calcification in human aortic vascular smooth muscle cells through interleukin-24 (IL-24), with/without TNF-alpha. Sci Rep. 2018;8(1):658.

Article  PubMed  PubMed Central  Google Scholar 

Ye Y, Chen A, Li L, et al. Repression of the antiporter SLC7A11/glutathione/glutathione peroxidase 4 axis drives ferroptosis of vascular smooth muscle cells to facilitate vascular calcification. Kidney Int. 2022;102(6):1259–75.

Article  PubMed  Google Scholar 

Xu S. Iron and atherosclerosis: the Link Revisited. Trends Mol Med. 2019;25(8):659–61.

Article  PubMed  Google Scholar 

Zhang S, Bei Y, Huang Y, et al. Induction of ferroptosis promotes vascular smooth muscle cell phenotypic switching and aggravates neointimal hyperplasia in mice. Mol Med. 2022;28(1):121.

Article  PubMed  PubMed Central  Google Scholar 

Mathew OP, Ranganna K, Milton SG. Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation. Pharmaceuticals (Basel). 2014;7(11):1008–27.

Article  PubMed  Google Scholar 

Haschka D, Hoffmann A, Weiss G. Iron in immune cell function and host defense. Semin Cell Dev Biol. 2021;115:27–36.

Article  PubMed  Google Scholar 

Cai J, Zhang M, Liu Y, et al. Iron accumulation in macrophages promotes the formation of foam cells and development of atherosclerosis. Cell Biosci. 2020;10(1):137.

Article  PubMed  PubMed Central  Google Scholar 

Saeed O, Otsuka F, Polavarapu R, et al. Pharmacological suppression of hepcidin increases macrophage cholesterol efflux and reduces foam cell formation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(2):299–307.

Article  PubMed  Google Scholar 

Cornelissen A, Guo L, Sakamoto A, Virmani R, Finn AV. New insights into the role of iron in inflammation and atherosclerosis. EBioMedicine. 2019;47:598–606.

Article  PubMed  PubMed Central  Google Scholar 

Ma J, Zhang H, Chen Y, Liu X, Tian J, Shen W. The role of Macrophage Iron overload and ferroptosis in atherosclerosis. Biomolecules. 2022;12(11):1702.

Article  PubMed  PubMed Central  Google Scholar 

Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron. 2014;83(5):1098–116.

Article  PubMed  Google Scholar 

Wunderer F, Traeger L, Sigurslid HH, Meybohm P, Bloch DB, Malhotra R. The role of hepcidin and iron homeostasis in atherosclerosis. Pharmacol Res. 2020;153:104664.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif