Ebeling M, Meyer AC, Modig K. The rise in the number of long-term survivors from different diseases can slow the increase in Life Expectancy of the Total Population. BMC Public Health. 2020;20:1523. https://doi.org/10.1186/s12889-020-09631-3.
Article PubMed PubMed Central Google Scholar
Gallo G, Lanza O, Savoia C. New Insight in Cardiorenal Syndrome: from biomarkers to Therapy. Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms24065089.
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): the ubiquitous system for Homeostasis and pathologies. Biomed Pharmacother. 2017;94:317–25. https://doi.org/10.1016/j.biopha.2017.07.091.
Article CAS PubMed Google Scholar
Caputo I, Bertoldi G, Driussi G, Cacciapuoti M, Calò LA. The RAAS Goodfellas in Cardiovascular System. J Clin Med. 2023;12:6873. https://doi.org/10.3390/jcm12216873.
Article CAS PubMed PubMed Central Google Scholar
Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Di Iorio B, Cozzolino M, Ronco C. Pathophysiology of the Cardio-Renal syndromes types 1–5: an Uptodate. Indian Heart J. 2017;69:255–65. https://doi.org/10.1016/j.ihj.2017.01.005.
Article PubMed PubMed Central Google Scholar
Ronco C, Bellasi A, Di Lullo L. Cardiorenal Syndrome: an overview. Adv Chronic Kidney Dis. 2018;25:382–90. https://doi.org/10.1053/j.ackd.2018.08.004.
Ronco C. The Cardiorenal Syndrome: basis and Common Ground for a multidisciplinary patient-oriented therapy. Cardiorenal Med. 2011;1:3–4. https://doi.org/10.1159/000323352.
Article PubMed PubMed Central Google Scholar
Zannad F, Rossignol P, Cardiorenal Syndrome, Revisited. Circulation. 2018;138:929–44. https://doi.org/10.1161/CIRCULATIONAHA.117.028814.
Amjad S, Nisar S, Bhat AA, Shah AR, Frenneaux MP, Fakhro K, Haris M, Reddy R, Patay Z, Baur J, et al. Role of NAD + in regulating Cellular and Metabolic Signaling pathways. Mol Metab. 2021;49:101195. https://doi.org/10.1016/j.molmet.2021.101195.
Article CAS PubMed PubMed Central Google Scholar
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Sig Transduct Target Ther. 2020;5:1–37. https://doi.org/10.1038/s41392-020-00311-7.
Zapata-Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD + homeostasis in Human Health and Disease. EMBO Mol Med. 2021;13:e13943. https://doi.org/10.15252/emmm.202113943.
Article CAS PubMed PubMed Central Google Scholar
Morevati M, Fang EF, Mace ML, Kanbay M, Gravesen E, Nordholm A, Egstrand S, Hornum M. Roles of NAD + in Acute and chronic kidney diseases. Int J Mol Sci. 2022;24:137. https://doi.org/10.3390/ijms24010137.
Article CAS PubMed PubMed Central Google Scholar
Zhang X, Zhang Y, Sun A, Ge J. The effects of Nicotinamide Adenine Dinucleotide in Cardiovascular diseases: Molecular mechanisms, roles and therapeutic potential. Genes Dis. 2021;9:959–72. https://doi.org/10.1016/j.gendis.2021.04.001.
Article CAS PubMed PubMed Central Google Scholar
Rotllan N, Camacho M, Tondo M, Diarte-Añazco EMG, Canyelles M, Méndez-Lara KA, Benitez S, Alonso N, Mauricio D, Escolà-Gil JC, et al. Therapeutic potential of emerging NAD+-Increasing strategies for Cardiovascular diseases. Antioxid (Basel). 2021;10(1939). https://doi.org/10.3390/antiox10121939.
Ralto KM, Rhee EP, Parikh SM. NAD + homeostasis in Renal Health and Disease. Nat Rev Nephrol. 2020;16:99–111. https://doi.org/10.1038/s41581-019-0216-6.
Article CAS PubMed Google Scholar
Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The Secret Life of NAD+: An Old Metabolite Controlling New Metabolic Signaling pathways. Endocr Rev. 2010;31:194–223. https://doi.org/10.1210/er.2009-0026.
Article CAS PubMed Google Scholar
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-Boosting molecules: the in vivo evidence. Cell Metab. 2018;27:529–47. https://doi.org/10.1016/j.cmet.2018.02.011.
Article CAS PubMed PubMed Central Google Scholar
Freeberg KA, Udovich CC, Martens CR, Seals DR, Craighead DH. Dietary supplementation with NAD+-Boosting compounds in humans: current knowledge and future directions. J Gerontol Biol Sci Med Sci. 2023;78:2435–48. https://doi.org/10.1093/gerona/glad106.
Cercillieux A, Ciarlo E, Canto C. Balancing NAD + deficits with Nicotinamide Riboside: therapeutic possibilities and limitations. Cell Mol Life Sci. 2022;79:463. https://doi.org/10.1007/s00018-022-04499-5.
Article CAS PubMed PubMed Central Google Scholar
Yang Y, Mohammed FS, Zhang N, Sauve AA. Dihydronicotinamide Riboside is a potent NAD(+) concentration enhancer in Vitro and in vivo. J Biol Chem. 2019;294:9295–307. https://doi.org/10.1074/jbc.RA118.005772.
Article CAS PubMed PubMed Central Google Scholar
Zapata-Pérez R, Tammaro A, Schomakers BV, Scantlebery AML, Denis S, Elfrink HL, Giroud-Gerbetant J, Cantó C, López-Leonardo C, McIntyre RL, et al. Reduced Nicotinamide Mononucleotide is a new and potent NAD + precursor in mammalian cells and mice. FASEB J. 2021;35:e21456. https://doi.org/10.1096/fj.202001826R.
Article CAS PubMed Google Scholar
Liu Y, Luo C, Li T, Zhang W, Zong Z, Liu X, Deng H. Reduced Nicotinamide Mononucleotide (NMNH) potently enhances NAD + and suppresses glycolysis, the TCA cycle, and cell growth. J Proteome Res. 2021;20:2596–606. https://doi.org/10.1021/acs.jproteome.0c01037.
Article CAS PubMed Google Scholar
Giroud-Gerbetant J, Joffraud M, Giner MP, Cercillieux A, Bartova S, Makarov MV, Zapata-Pérez R, Sánchez-García JL, Houtkooper RH, Migaud ME, et al. A reduced form of Nicotinamide Riboside defines a new path for NAD + biosynthesis and acts as an orally bioavailable NAD + precursor. Mol Metab. 2019;30:192–202. https://doi.org/10.1016/j.molmet.2019.09.013.
Article CAS PubMed PubMed Central Google Scholar
Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, Bellomo R, Berl T, Bobek I, Cruz DN, et al. Cardio-renal syndromes: Report from the Consensus Conference of the Acute Dialysis Quality Initiative. Eur Heart J. 2010;31:703–11. https://doi.org/10.1093/eurheartj/ehp507.
Seckinger D, Ritter O, Patschan D. Risk factors and outcome variables of Cardiorenal Syndrome Type 1 from the nephrologist’s perspective. Int Urol Nephrol. 2022;54:1591–601. https://doi.org/10.1007/s11255-021-03036-w.
Hanada S, Takewa Y, Mizuno T, Tsukiya T, Taenaka Y, Tatsumi E. Effect of the technique for assisting renal blood circulation on ischemic kidney in Acute Cardiorenal Syndrome. J Artif Organs. 2012;15:140–5. https://doi.org/10.1007/s10047-011-0613-5.
Article CAS PubMed Google Scholar
De Vecchis R, Baldi C. Cardiorenal Syndrome Type 2: from diagnosis to Optimal Management. Ther Clin Risk Manag. 2014;10:949–61. https://doi.org/10.2147/TCRM.S63255.
Article PubMed PubMed Central Google Scholar
de Silva R, Nikitin NP, Witte KKA, Rigby AS, Goode K, Bhandari S, Clark AL, Cleland JGF. Incidence of renal dysfunction over 6 months in patients with chronic heart failure due to left ventricular systolic dysfunction: contributing factors and relationship to prognosis. Eur Heart J. 2006;27:569–81. https://doi.org/10.1093/eurheartj/ehi696.
Article CAS PubMed Google Scholar
Cruz DN, Schmidt-Ott KM, Vescovo G, House AA, Kellum JA, Ronco C, McCullough PA, for the Acute Dialysis Quality Initiative (ADQI). Consensus Group Pathophysiology of Cardiorenal Syndrome Type 2 in Stable Chronic Heart Failure: Workgroup Statements from the Eleventh C
留言 (0)