NAD+ enhancers as therapeutic agents in the cardiorenal axis

Ebeling M, Meyer AC, Modig K. The rise in the number of long-term survivors from different diseases can slow the increase in Life Expectancy of the Total Population. BMC Public Health. 2020;20:1523. https://doi.org/10.1186/s12889-020-09631-3.

Article  PubMed  PubMed Central  Google Scholar 

Gallo G, Lanza O, Savoia C. New Insight in Cardiorenal Syndrome: from biomarkers to Therapy. Int J Mol Sci. 2023;24. https://doi.org/10.3390/ijms24065089.

Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): the ubiquitous system for Homeostasis and pathologies. Biomed Pharmacother. 2017;94:317–25. https://doi.org/10.1016/j.biopha.2017.07.091.

Article  CAS  PubMed  Google Scholar 

Caputo I, Bertoldi G, Driussi G, Cacciapuoti M, Calò LA. The RAAS Goodfellas in Cardiovascular System. J Clin Med. 2023;12:6873. https://doi.org/10.3390/jcm12216873.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Di Iorio B, Cozzolino M, Ronco C. Pathophysiology of the Cardio-Renal syndromes types 1–5: an Uptodate. Indian Heart J. 2017;69:255–65. https://doi.org/10.1016/j.ihj.2017.01.005.

Article  PubMed  PubMed Central  Google Scholar 

Ronco C, Bellasi A, Di Lullo L. Cardiorenal Syndrome: an overview. Adv Chronic Kidney Dis. 2018;25:382–90. https://doi.org/10.1053/j.ackd.2018.08.004.

Article  PubMed  Google Scholar 

Ronco C. The Cardiorenal Syndrome: basis and Common Ground for a multidisciplinary patient-oriented therapy. Cardiorenal Med. 2011;1:3–4. https://doi.org/10.1159/000323352.

Article  PubMed  PubMed Central  Google Scholar 

Zannad F, Rossignol P, Cardiorenal Syndrome, Revisited. Circulation. 2018;138:929–44. https://doi.org/10.1161/CIRCULATIONAHA.117.028814.

Article  PubMed  Google Scholar 

Amjad S, Nisar S, Bhat AA, Shah AR, Frenneaux MP, Fakhro K, Haris M, Reddy R, Patay Z, Baur J, et al. Role of NAD + in regulating Cellular and Metabolic Signaling pathways. Mol Metab. 2021;49:101195. https://doi.org/10.1016/j.molmet.2021.101195.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Sig Transduct Target Ther. 2020;5:1–37. https://doi.org/10.1038/s41392-020-00311-7.

Article  CAS  Google Scholar 

Zapata-Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD + homeostasis in Human Health and Disease. EMBO Mol Med. 2021;13:e13943. https://doi.org/10.15252/emmm.202113943.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morevati M, Fang EF, Mace ML, Kanbay M, Gravesen E, Nordholm A, Egstrand S, Hornum M. Roles of NAD + in Acute and chronic kidney diseases. Int J Mol Sci. 2022;24:137. https://doi.org/10.3390/ijms24010137.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Zhang Y, Sun A, Ge J. The effects of Nicotinamide Adenine Dinucleotide in Cardiovascular diseases: Molecular mechanisms, roles and therapeutic potential. Genes Dis. 2021;9:959–72. https://doi.org/10.1016/j.gendis.2021.04.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rotllan N, Camacho M, Tondo M, Diarte-Añazco EMG, Canyelles M, Méndez-Lara KA, Benitez S, Alonso N, Mauricio D, Escolà-Gil JC, et al. Therapeutic potential of emerging NAD+-Increasing strategies for Cardiovascular diseases. Antioxid (Basel). 2021;10(1939). https://doi.org/10.3390/antiox10121939.

Ralto KM, Rhee EP, Parikh SM. NAD + homeostasis in Renal Health and Disease. Nat Rev Nephrol. 2020;16:99–111. https://doi.org/10.1038/s41581-019-0216-6.

Article  CAS  PubMed  Google Scholar 

Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The Secret Life of NAD+: An Old Metabolite Controlling New Metabolic Signaling pathways. Endocr Rev. 2010;31:194–223. https://doi.org/10.1210/er.2009-0026.

Article  CAS  PubMed  Google Scholar 

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-Boosting molecules: the in vivo evidence. Cell Metab. 2018;27:529–47. https://doi.org/10.1016/j.cmet.2018.02.011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freeberg KA, Udovich CC, Martens CR, Seals DR, Craighead DH. Dietary supplementation with NAD+-Boosting compounds in humans: current knowledge and future directions. J Gerontol Biol Sci Med Sci. 2023;78:2435–48. https://doi.org/10.1093/gerona/glad106.

Article  CAS  Google Scholar 

Cercillieux A, Ciarlo E, Canto C. Balancing NAD + deficits with Nicotinamide Riboside: therapeutic possibilities and limitations. Cell Mol Life Sci. 2022;79:463. https://doi.org/10.1007/s00018-022-04499-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Mohammed FS, Zhang N, Sauve AA. Dihydronicotinamide Riboside is a potent NAD(+) concentration enhancer in Vitro and in vivo. J Biol Chem. 2019;294:9295–307. https://doi.org/10.1074/jbc.RA118.005772.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zapata-Pérez R, Tammaro A, Schomakers BV, Scantlebery AML, Denis S, Elfrink HL, Giroud-Gerbetant J, Cantó C, López-Leonardo C, McIntyre RL, et al. Reduced Nicotinamide Mononucleotide is a new and potent NAD + precursor in mammalian cells and mice. FASEB J. 2021;35:e21456. https://doi.org/10.1096/fj.202001826R.

Article  CAS  PubMed  Google Scholar 

Liu Y, Luo C, Li T, Zhang W, Zong Z, Liu X, Deng H. Reduced Nicotinamide Mononucleotide (NMNH) potently enhances NAD + and suppresses glycolysis, the TCA cycle, and cell growth. J Proteome Res. 2021;20:2596–606. https://doi.org/10.1021/acs.jproteome.0c01037.

Article  CAS  PubMed  Google Scholar 

Giroud-Gerbetant J, Joffraud M, Giner MP, Cercillieux A, Bartova S, Makarov MV, Zapata-Pérez R, Sánchez-García JL, Houtkooper RH, Migaud ME, et al. A reduced form of Nicotinamide Riboside defines a new path for NAD + biosynthesis and acts as an orally bioavailable NAD + precursor. Mol Metab. 2019;30:192–202. https://doi.org/10.1016/j.molmet.2019.09.013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, Bellomo R, Berl T, Bobek I, Cruz DN, et al. Cardio-renal syndromes: Report from the Consensus Conference of the Acute Dialysis Quality Initiative. Eur Heart J. 2010;31:703–11. https://doi.org/10.1093/eurheartj/ehp507.

Article  PubMed  Google Scholar 

Seckinger D, Ritter O, Patschan D. Risk factors and outcome variables of Cardiorenal Syndrome Type 1 from the nephrologist’s perspective. Int Urol Nephrol. 2022;54:1591–601. https://doi.org/10.1007/s11255-021-03036-w.

Article  PubMed  Google Scholar 

Hanada S, Takewa Y, Mizuno T, Tsukiya T, Taenaka Y, Tatsumi E. Effect of the technique for assisting renal blood circulation on ischemic kidney in Acute Cardiorenal Syndrome. J Artif Organs. 2012;15:140–5. https://doi.org/10.1007/s10047-011-0613-5.

Article  CAS  PubMed  Google Scholar 

De Vecchis R, Baldi C. Cardiorenal Syndrome Type 2: from diagnosis to Optimal Management. Ther Clin Risk Manag. 2014;10:949–61. https://doi.org/10.2147/TCRM.S63255.

Article  PubMed  PubMed Central  Google Scholar 

de Silva R, Nikitin NP, Witte KKA, Rigby AS, Goode K, Bhandari S, Clark AL, Cleland JGF. Incidence of renal dysfunction over 6 months in patients with chronic heart failure due to left ventricular systolic dysfunction: contributing factors and relationship to prognosis. Eur Heart J. 2006;27:569–81. https://doi.org/10.1093/eurheartj/ehi696.

Article  CAS  PubMed  Google Scholar 

Cruz DN, Schmidt-Ott KM, Vescovo G, House AA, Kellum JA, Ronco C, McCullough PA, for the Acute Dialysis Quality Initiative (ADQI). Consensus Group Pathophysiology of Cardiorenal Syndrome Type 2 in Stable Chronic Heart Failure: Workgroup Statements from the Eleventh C

留言 (0)

沒有登入
gif