Post-symptomatic administration of hMSCs exerts therapeutic effects in SCA2 mice

Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

Article  PubMed  Google Scholar 

Auburger GW. Spinocerebellar ataxia type 2. Handb Clin Neurol. 2012;103:423–36.

Article  PubMed  Google Scholar 

Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012;124:1–21.

Article  PubMed  Google Scholar 

Sinha KK, Worth PF, Jha DK, Sinha S, Stinton VJ, Davis MB, Wood NW, Sweeney MG, Bhatia KP. Autosomal dominant cerebellar ataxia: SCA2 is the most frequent mutation in eastern India. J Neurol Neurosurg Psychiatry. 2004;75:448–52.

Article  PubMed  PubMed Central  Google Scholar 

Lo RY, Figueroa KP, Pulst SM, Lin CY, Perlman S, Wilmot G, Gomez CM, Schmahmann J, Paulson H, Shakkottai VG, Ying SH, Zesiewicz T, Bushara K, Geschwind M, Xia G, Subramony SH, Ashizawa T, Kuo SH. Vascular risk factors and clinical progression in spinocerebellar ataxias. Tremor Other Hyperkinet Mov. 2015;5:287.

Article  Google Scholar 

Antenora A, Rinaldi C, Roca A, Pane C, Lieto M, Sacca F, Peluso S, De Michele G, Filla A. The multiple faces of spinocerebellar ataxia type 2. Ann Clin Transl Neurol. 2017;4:687–95.

Article  PubMed  PubMed Central  Google Scholar 

Lastres-Becker I, Rub U, Auburger G. Spinocerebellar ataxia 2 (SCA2). Cerebellum. 2008;7:115–24.

Article  PubMed  Google Scholar 

Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol. 1999;97:306–10.

Article  PubMed  Google Scholar 

Si YL, Zhao YL, Hao HJ, Fu XB, Han WD. MSCs: Biological characteristics, clinical applications and their outstanding concerns. Ageing Res Rev. 2011;10:93–103.

Article  PubMed  Google Scholar 

Staff NP, Jones DT, Singer W. Mesenchymal stromal cell therapies for neurodegenerative diseases. Mayo Clin Proc. 2019;94:892–905.

Article  PubMed  Google Scholar 

Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68.

Article  PubMed  PubMed Central  Google Scholar 

El-Kadiry AE, Rafei M, Shammaa R. Cell therapy: types, regulation, and clinical benefits. Front Med. 2021;8:756029.

Article  Google Scholar 

In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22:1338–45.

Article  PubMed  Google Scholar 

Joshi M, Patil PB, He Z, Holgersson J, Olausson M, Sumitran-Holgersson S. Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes. Cytotherapy. 2012;14(6):657–69.

Article  PubMed  PubMed Central  Google Scholar 

Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY, Soong BW, Ho JH, Lee OK. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci. 2011;18:54.

Article  PubMed  PubMed Central  Google Scholar 

Tsai YA, Liu RS, Lirng JF, Yang BH, Chang CH, Wang YC, Wu YS, Ho JH, Lee OK, Soong BW. Treatment of spinocerebellar ataxia with mesenchymal stem cells: a phase I/IIA clinical study. Cell Transplant. 2017;26:503–12.

Article  PubMed  PubMed Central  Google Scholar 

Nam Y, Yoon D, Hong J, Kim MS, Lee TY, Kim KS, Lee HW, Suk K, Kim SR. Therapeutic effects of human mesenchymal stem cells in a mouse model of cerebellar ataxia with neuroinflammation. J Clin Med. 2020;9:3654.

Article  PubMed  PubMed Central  Google Scholar 

Park N, Sharma C, Jung UJ, Kim S, Nam Y, Kim KS, Suk K, Lee HW, Kim SR. Mesenchymal stem cell transplantation ameliorates ara-c-induced motor deficits in a mouse model of cerebellar ataxia. J Clin Med. 2023;12:1756.

Article  PubMed  PubMed Central  Google Scholar 

Shibanuma M, Mashimo J, Mita A, Kuroki T, Nose K. Cloning from a mouse osteoblastic cell line of a set of transforming-growth-factor-beta 1-regulated genes, one of which seems to encode a follistatin-related polypeptide. Eur J Biochem. 1993;217:13–9.

Article  PubMed  Google Scholar 

Chaly Y, Hostager B, Smith S, Hirsch R. Follistatin-like protein 1 and its role in inflammation and inflammatory diseases. Immunol Res. 2014;59:266–72.

Article  PubMed  Google Scholar 

Chaly Y, Blair HC, Smith SM, Bushnell DS, Marinov AD, Campfield BT, Hirsch R. Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells. Ann Rheum Dis. 2015;74:1467–73.

Article  PubMed  Google Scholar 

Cheng KY, Liu Y, Han YG, Li JK, Jia JL, Chen B, Yao ZX, Nie L, Cheng L. Follistatin-like protein 1 suppressed pro-inflammatory cytokines expression during neuroinflammation induced by lipopolysaccharide. J Mol Histol. 2017;48:63–72.

Article  PubMed  Google Scholar 

Shen H, Cui G, Li Y, Ye W, Sun Y, Zhang Z, Li J, Xu G, Zeng X, Zhang Y, Zhang W, Huang Z, Chen W, Shen Z. Follistatin-like 1 protects mesenchymal stem cells from hypoxic damage and enhances their therapeutic efficacy in a mouse myocardial infarction model. Stem Cell Res Ther. 2019;10:17.

Article  PubMed  PubMed Central  Google Scholar 

Mudo G, Bonomo A, Di Liberto V, Frinchi M, Fuxe K, Belluardo N. The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain. J Neural Transm. 2009;116:995–1005.

Article  PubMed  Google Scholar 

Iwasaki K, Isaacs KR, Jacobowitz DM. Brain-derived neurotrophic factor stimulates neurite outgrowth in a calretinin-enriched neuronal culture system. Int J Dev Neurosci. 1998;16:135–45.

Article  PubMed  Google Scholar 

Babuska V, Houdek Z, Tuma J, Purkartova Z, Tumova J, Kralickova M, Vozeh F, Cendelin J. Transplantation of embryonic cerebellar grafts improves gait parameters in ataxic lurcher mice. Cerebellum. 2015;14:632–41.

Article  PubMed  Google Scholar 

Yang W, Wu Y, Wang C, Liu Z, Xu M, Zheng X. FSTL1 contributes to tumor progression via attenuating apoptosis in a AKT/GSK-3beta: dependent manner in hepatocellular carcinoma. Cancer Biomark. 2017;20:75–85.

Article  PubMed  Google Scholar 

Li W, Zhang L, Yin X, Ai H. The effects of Follistatin on the differentiation of human bone marrow mesenchymal stem cells into neurons-like cells. Ann Clin Lab Sci. 2020;50:3–12.

PubMed  Google Scholar 

Liu R, Yang Y, Shen J, Chen H, Zhang Q, Ba R, Wei Y, Li KC, Zhang X, Zhao C. Fstl1 is involved in the regulation of radial glial scaffold development. Mol Brain. 2015;8:53.

Article  PubMed  PubMed Central  Google Scholar 

Kumari E, Xu A, Chen R, Yan Y, Yang Z, Zhang T. FSTL1-knockdown improves neural oscillation via decreasing neuronal-inflammation regulating apoptosis in Abeta(1–42) induced AD model mice. Exp Neurol. 2023;359:114231.

Article  PubMed  Google Scholar 

Kim JH, Han J, Seo D, Yoon JH, Yoon D, Hong J, Kim SR, Kim MS, Lee TY, Kim KS, Ko PW, Lee HW, Suk K. Characterization of mesenchymal stem cells derived from patients with cerebellar ataxia: downregulation of the anti-inflammatory secretome profile. Cells. 2020;9:212.

Article  PubMed  PubMed Central  Google Scholar 

Marcelo A, Afonso IT, Afonso-Reis R, Brito DVC, Costa RG, Rosa A, Alves-Cruzeiro J, Ferreira B, Henriques C, Nobre RJ, Matos CA, de Almeida LP, Nobrega C. Autophagy in Spinocerebellar ataxia type 2, a dysregulated pathway, and a target for therapy. Cell Death Dis. 2021;12:1117.

Article  PubMed  PubMed Central  Google Scholar 

Liu YJ, Wang JY, Zhang XL, Jiang LL, Hu HY. Ataxin-2 sequesters Raptor into aggregates and impairs cellular mTORC1 signaling. FEBS J. 2024;291:1795–812.

Article  PubMed  Google Scholar 

Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, M

留言 (0)

沒有登入
gif