Arif I, Batool M, Schenk PM. Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends Biotechnol. 2020;38(12):1385–96.
Article PubMed CAS Google Scholar
Bhattacharyya PNJD. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol iotechnol. 2012;28(4):1327–50.
Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA. Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Acad Sci Eng Technol. 2009;49(1):90–2.
Lucas Garcia J, Probanza A, Ramos B, Barriuso J, Gutierrez Manero F. Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant Soil. 2004;267:143–53.
Ipek M, Aras S, Arıkan Ş, Eşitken A, Pırlak L, Dönmez MF, Turan M. Root plant growth promoting rhizobacteria inoculations increase ferric chelate reductase (FC-R) activity and Fe nutrition in pear under calcareous soil conditions. Sci Hortic. 2017;219:144–51.
Bal HB, Nayak L, Das S, Adhya TK. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 2013;366:93–105.
Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric. 2016;2(1):1127500.
Della Mónica IFWVA, Stefanoni Rubio PJ, Vaca-Paulín R, Yañez-Ocampo G. Exploring plant growth-promoting rhizobacteria as stress alleviators: a methodological insight. Arch Microbiol. 2022;204(6):316.
Ahmed T, Noman M, Gardea-Torresdey JL, White JC, Li B. Dynamic interplay between nano-enabled agrochemicals and the plant-associated microbiome. Trends Plant Sci. 2023;16:1310.
An C, Sun C, Li N, Huang B, Jiang J, Shen Y, Wang C, Zhao X, Cui B, Wang C. Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J Nanobiotechnol. 2022;20(1):1–19.
Hussain M, Shakoor N, Adeel M, Ahmad MA, Zhou H, Zhang Z, Xu M, Rui Y, White JC. Nano-enabled plant microbiome engineering for disease resistance. Nano Today. 2023;48: 101752.
Liu Y, Cao X, Yue L, Wang C, Tao M, Wang Z, Xing B. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: reactive oxygen species homeostasis and rhizobacteria regulation. Environ Pollut. 2022;299: 118900.
Article PubMed CAS Google Scholar
Ahmed T, Noman M, Jiang H, Shahid M, Ma C, Wu Z, Nazir MM, Ali MA, White JC, Chen J. Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight disease by modulating plant defense response and nutritional status of rice (Oryza sativa L.). Nano Today. 2022;45:101547.
Wang C, Yue L, Cheng B, Chen F, Zhao X, Wang Z, Xing B. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ Sci Nano. 2022;9(1):302–12.
Rashid MI, Shah GA, Sadiq M, Amin Nu, Ali AM, Ondrasek G, Shahzad K. Nanobiochar and copper oxide nanoparticles mixture synergistically increases soil nutrient availability and improves wheat production. Plants. 2023;12(6):1312.
Article PubMed PubMed Central CAS Google Scholar
Afzal S, Singh NK. Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem. Environ Pollut. 2022;314: 120224.
Article PubMed CAS Google Scholar
Zhao L, Chen S, Tan X, Yan X, Zhang W, Huang Y, Ji R, White JC. Environmental implications of MoS2 nanosheets on rice and associated soil microbial communities. Chemosphere. 2022;291: 133004.
Article PubMed CAS Google Scholar
Khan ST. Interaction of engineered nanomaterials with soil microbiome and plants: their impact on plant and soil health. Sustain Agric Rev. 2020;41:181–99.
Wang C, Yue L, Cheng B, Chen F, Zhao X, Wang Z, Xing B. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ Sci Nano. 2022;9(1):302–12.
Zhang W, Jia X, Chen S, Wang J, Ji R, Zhao L. Response of soil microbial communities to engineered nanomaterials in presence of maize (Zea mays L.) plants. Environ Pollut. 2020;267:115608.
Article PubMed CAS Google Scholar
Lewis RW, Bertsch PM, McNear DH. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria–a critical review. Nanotoxicology. 2019;13(3):392–428.
Article PubMed CAS Google Scholar
Khanna K, Kohli SK, Handa N, Kaur H, Ohri P, Bhardwaj R, Yousaf B, Rinklebe J, Ahmad P. Enthralling the impact of engineered nanoparticles on soil microbiome: a concentric approach towards environmental risks and cogitation. Ecotoxicol Environ Saf. 2021;222: 112459.
Article PubMed CAS Google Scholar
Rodrigues ES, Montanha GS, de Almeida E, Fantucci H, Santos RM, de Carvalho HW. Effect of nano cerium oxide on soybean (Glycine max L. Merrill) crop exposed to environmentally relevant concentrations. Chemosphere. 2021;273:128492.
Article PubMed CAS Google Scholar
Cao Z, Stowers C, Rossi L, Zhang W, Lombardini L, Ma X. Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr). Environ Sci Nano. 2017;4(5):1086–94.
Zhao F, Xin X, Cao Y, Su D, Ji P, Zhu Z, He Z. Use of carbon nanoparticles to improve soil fertility, crop growth and nutrient uptake by corn (Zea mays L.). Nanomaterials. 2021;11(10):2717.
Article PubMed PubMed Central CAS Google Scholar
Wang H, Zhang M, Song Y, Li H, Huang H, Shao M, Liu Y, Kang Z. Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon. 2018;136:94–102.
Rahmani N, Radjabian T, Soltani BM. Impacts of foliar exposure to multi-walled carbon nanotubes on physiological and molecular traits of Salvia verticillata L., as a medicinal plant. Plant Physiol Biochem. 2020;150:27–38.
Article PubMed CAS Google Scholar
Chung H, Kim MJ, Ko K, Kim JH, Kwon H-a, Hong I, Park N, Lee S-W, Kim W. Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci Total Environ. 2015;514:307–13.
Article PubMed CAS Google Scholar
Asadishad B, Chahal S, Akbari A, Cianciarelli V, Azodi M, Ghoshal S, Tufenkji N. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol. 2018;52(4):1908–18.
Article PubMed CAS Google Scholar
Pietroiusti A, Magrini A, Campagnolo L. New frontiers in nanotoxicology: gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicol Appl Pharmacol. 2016;299:90–5.
Article PubMed CAS Google Scholar
Ge Y, Schimel JP, Holden PA. Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol. 2012;78(18):6749–58.
Article PubMed PubMed Central CAS Google Scholar
Chen LYJ, Li X, Liang T, Nie C, Xie F, Liu K, Peng X, Xie J. Carbon nanoparticles enhance potassium uptake via upregulating potassium channel expression and imitating biological ion channels in BY-2 cells. J Nanobiotechnology. 2020;18:21.
Article PubMed PubMed Central CAS Google Scholar
Yang JLT, Li HJ, Yin QS, Zhang YL, Zhou HP, Zhang SX. Effects of nano-carbon sol on physiological characteristics of root system and potassium absorption of flue-cured tobacco. Yancao Keji. 2015;48(1):7–11.
留言 (0)