Agreement of PROMIS Preference (PROPr) scores generated from the PROMIS-29 + 2 and the PROMIS-16

Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., Amtmann, D., Bode, R., Buysse, D., Choi, S., Cook, K., DeVellis, R., DeWalt, D., Fries, J. F., Gershon, R., Hahn, E. A., Lai, J. S., Pilkonis, P., Revicki, D., & Hays, R. (2010). The patient-reported outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194. https://doi.org/10.1016/j.jclinepi.2010.04.011

Article  PubMed  PubMed Central  Google Scholar 

PROMIS (2023). List of adult measures. Health measures. Retrieved March 19, 2024, from https://www.healthmeasures.net/explore-measurement-systems/promis/intro-to-promis/list-of-adult-measures

Embretson, S., & Yang, X. (2006). Item response theory. In J. L. Green, G. Camilli, & P. B. Elmore (Eds.), Handbook of complementary methods in education research (pp. 385–409). Lawrence Erlbaum Associates.

Cella, D., Gershon, R., Lai, J. S., & Choi, S. (2007). The future of outcomes measurement: Item Banking, tailored short-forms, and computerized adaptive assessment. Quality of Life Research, 16(S1), 133–141. https://doi.org/10.1007/s11136-007-9204-6

Article  PubMed  Google Scholar 

Cella, D., Choi, S. W., Condon, D. M., Schalet, B., Hays, R. D., Rothrock, N. E., Yount, S., Cook, K. F., Gershon, R. C., Amtmann, D., DeWalt, D. A., Pilkonis, P. A., Stone, A. A., Weinfurt, K., & Reeve, B. B. (2019). PROMIS® Adult Health profiles: Efficient short-form measures of seven health domains. Value in Health, 22(5), 537–544. https://doi.org/10.1016/j.jval.2019.02.004

Article  PubMed  PubMed Central  Google Scholar 

Edelen, M. O., Zeng, C., Hays, R. D., Rodriguez, A., Hanmer, J., Baumhauer, J., Cella, D., Reeve, B. B., & Herman, P. M. (2024). Development of an ultra-short measure of eight domains of health-related quality of life for research and clinical care: The patient-reported outcomes Measurement Information System® PROMIS®-16 profile. Quality of Life Research. https://doi.org/10.1007/s11136-023-03597-6

Article  PubMed  Google Scholar 

Hays, R. D., Spritzer, K. L., Schalet, B. D., & Cella, D. (2018). PROMIS®-29 v2.0 profile physical and mental health summary scores. Quality of Life Research, 27(7), 1885–1891. https://doi.org/10.1007/s11136-018-1842-3

Article  PubMed  PubMed Central  Google Scholar 

Keeney, R. L., Raiffa, H., & Meyer, R. F. (2003). Decisions with multiple objectives: Preferences and value tradeoffs. University.

Torrance, G. W., Boyle, M. H., & Horwood, S. P. (1982). Application of multi-attribute utility theory to measure social preferences for Health states. Operations Research, 30(6), 1043–1069. https://doi.org/10.1287/opre.30.6.1043

Article  CAS  PubMed  Google Scholar 

Feeny, D., Krahn, M., Prosser, L. A., & Salomon, J. A. (2016). Valuing health outcomes-online appendices. In P. J. Neumann, G. D. Sanders, L. B. Russell, J. E. Siegel, & T. G. Ganiats (Eds.), Cost-effectiveness in Health and Medicine (2nd ed., pp. 167–199). Oxford University Press.

Dewitt, B., Feeny, D., Fischhoff, B., Cella, D., Hays, R. D., Hess, R., Pilkonis, P. A., Revicki, D. A., Roberts, M. S., Tsevat, J., Yu, L., & Hanmer, J. (2018). Estimation of a preference-based summary score for the patient-reported outcomes measurement information system: The PROMIS®-preference (PROPr) scoring system. Medical Decision Making, 38(6), 683–698. https://doi.org/10.1177/0272989x18776637

Article  PubMed  PubMed Central  Google Scholar 

Kaplan, R. M., Tally, S., Hays, R. D., Feeny, D., Ganiats, T. G., Palta, M., & Fryback, D. G. (2011). Five preference-based indexes in cataract and heart failure patients were not equally responsive to change. Journal of Clinical Epidemiology, 64(5), 497–506. https://doi.org/10.1016/j.jclinepi.2010.04.010

Article  PubMed  Google Scholar 

Hanmer, J. (2021). Cross-sectional validation of the PROMIS-Preference scoring system by its association with social determinants of health. Quality of Life Research, 30(3), 881–889. https://doi.org/10.1007/s11136-020-02691-3

Article  PubMed  Google Scholar 

Hanmer, J., Cella, D., Feeny, D., Fischhoff, B., Hays, R. D., Hess, R., Pilkonis, P. A., Revicki, D., Roberts, M., Tsevat, J., & Yu, L. (2017). Selection of key health domains from PROMIS® for a generic preference-based scoring system. Quality of Life Research, 26(12), 3377–3385. https://doi.org/10.1007/s11136-017-1686-2

Article  PubMed  PubMed Central  Google Scholar 

Neumann, P. J., Siegel, J. E., Sanders, G. D., Russell, L. B., & Ganiats, T. G. (Eds.). (2016). Cost-effectiveness in health and medicine (2nd ed.). Oxford University Press.

Hanmer, J., Cherepanov, D., Palta, M., Kaplan, R. M., Feeny, D., & Fryback, D. G. (2016). Health Condition Impacts in a nationally Representative Cross-sectional Survey Vary substantially by preference-based Health Index. Medical Decision Making, 36(2), 264–274. https://doi.org/10.1177/0272989X15599546

Article  PubMed  Google Scholar 

Torongo, R., KnowledgePanel New, & York (2023). NY: Ipsos [cited 2023 03/12/2024].

Herman, P. M., Slaughter, M. E., Qureshi, N., Azzam, T., Cella, D., DiGuiseppi, G. (2024). Comparing Health Survey Data Cost and Quality Between Amazon’s Mechanical Turk and Ipsos’ KnowledgePanel. PLoS One.

Hays, R. D., Liu, H., & Kapteyn, A. (2015). Use of internet panels to conduct surveys. Behavior Research Methods, 47(3), 685–690. https://doi.org/10.3758/s13428-015-0617-9

Article  PubMed  PubMed Central  Google Scholar 

Hays, R. D., Qureshi, N., Herman, P. M., Rodriguez, A., Kapteyn, A., & Edelen, M. O. (2023). Effects of excluding those who report having Syndomitis or Chekalism on data quality: Longitudinal Health Survey of a sample from Amazon’s mechanical Turk. Journal of Medical Internet Research, 25. https://doi.org/10.2196/46421

Fairbank, J. C., & Pynsent, P. B. (2000). The Oswestry Disability Index. Spine, 25(22), 2940–2953. https://doi.org/10.1097/00007632-200011150-00017

Article  CAS  PubMed  Google Scholar 

Davidson, M., & Keating, J. (2005). Oswestry Disability Questionnaire (ODQ). Australian Journal of Physiotherapy, 51(4), 270. https://doi.org/10.1016/s0004-9514(05)70016-7

Article  PubMed  Google Scholar 

Roland, M., & Morris, R. (1983). A study of the Natural History of Back Pain. Spine, 8(2), 141–144. https://doi.org/10.1097/00007632-198303000-00004

Article  CAS  PubMed  Google Scholar 

Krebs, E. E., Lorenz, K. A., Bair, M. J., Damush, T. M., Wu, J., Sutherland, J. M., Asch, S. M., & Kroenke, K. (2009). Development and initial validation of the PEG, a three-item scale assessing pain intensity and interference. Journal of General Internal Medicine, 24(6), 733–738. https://doi.org/10.1007/s11606-009-0981-1

Article  PubMed  PubMed Central  Google Scholar 

Von Korff, M., DeBar, L. L., Deyo, R. A., Mayhew, M., Kerns, R. D., Goulet, J. L., & Brandt, C. (2020). Identifying multisite chronic pain with electronic health records data. Pain Medicine, 21(12), 3387–3392. https://doi.org/10.1093/pm/pnaa295

Article  Google Scholar 

Von Korff, M., Ormel, J., Keefe, F. J., & Dworkin, S. F. (1992). Grading the severity of chronic pain. Pain, 50(2), 133–149. https://doi.org/10.1016/0304-3959(92)90154-4

Article  Google Scholar 

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ane.0000000000002864

Article  Google Scholar 

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037//0033-2909.112.1.155

Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1(8476), 307–310.

Article  CAS  PubMed  Google Scholar 

Hanmer, J., Cella, D., Feeny, D., Fischhoff, B., Hays, R. D., Hess, R., Pilkonis, P. A., Revicki, D., Roberts, M., Tsevat, J., & Yu, L. (2018). Evaluation of options for presenting health-states from PROMIS® Item banks for valuation exercises. Quality of Life Research, 27(7), 1835–1843. https://doi.org/10.1007/s11136-018-1852-1

Article  PubMed  PubMed Central  Google Scholar 

Foster, A., Croot, L., Brazier, J., Harris, J., & O’Cathain, A. (2018). The facilitators and barriers to implementing patient reported outcome measures in organisations delivering health related services: A systematic review of reviews. Journal of Patient-Reported Outcomes, 2(1). https://doi.org/10.1186/s41687-018-0072-3

Philpot, L. M., Barnes, S. A., Brown, R. M., Austin, J. A., James, C. S., Stanford, R. H., & Ebbert, J. O. (2018). Barriers and benefits to the use of patient-reported outcome measures in routine clinical care: A qualitative study. American Journal of Medical Quality, 33(4), 359–364. https://doi.org/10.1177/1062860617745986

Article  PubMed  Google Scholar 

Hyland, C. J., Mou, D., Virji, A. Z., Sokas, C. M., Bokhour, B., Pusic, A. L., & Mjåset, C. (2023). How to make proms work: Qualitative insights from leaders at United States Hospitals with successful proms programs. Quality of Life Research, 32(8), 2259–2269. https://doi.org/10.1007/s11136-023-03388-z

Article  PubMed  Google Scholar 

Hays, R. D., Bode, R., Rothrock, N., Riley, W., Cella, D., & Gershon, R. (2010). The impact of next and back buttons on time to complete and measurement reliability in computer-based surveys. Quality of Life Research, 19, 1181–1184.

Article  PubMed  PubMed Central  Google Scholar 

Khanna, D., Maranian, P., Rothrock, N., et al. (2012). Feasibility and construct validity of PROMIS and legacy instruments in an academic scleroderma clinic. Value in Health, 15, 128–134.

Article  PubMed  Google Scholar 

Wu, A. W., Kharrazi, H., Boulware, L. E., & Snyder, C. F. (2013). Measure once, cut twice—adding patient-reported outcome measures to the electronic health record for comparative Effectiveness Research. Journal of Clinical Epidemiology, 66(8), S12–S20. https://doi.org/10.1016/j.jclinepi.2013.04.005

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif