Amino acid metabolism in glioma: in vivo MR-spectroscopic detection of alanine as a potential biomarker of poor survival in glioma patients

Ostrom QT, Bauchet L, Davis FG et al (2014) The epidemiology of glioma in adults: a state of the science review. Neuro Oncol 16:896–913. https://doi.org/10.1093/neuonc/nou087

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weller M, Wick W, Aldape K et al (2015) Glioma. Nat Rev Dis Primers 1:1–18. https://doi.org/10.1038/nrdp.2015.17

Article  Google Scholar 

Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leibetseder A, Preusser M, Berghoff AS (2022) New approaches with Precision Medicine in Adult Brain tumors. Cancers (Basel) 14:712. https://doi.org/10.3390/cancers14030712

Article  CAS  PubMed  Google Scholar 

Mowforth OD, Brannigan J, El Khoury M et al (2023) Personalised therapeutic approaches to glioblastoma: a systematic review. Front Med 10. https://doi.org/10.3389/fmed.2023.1166104

Garofano L, Migliozzi S, Oh YT et al (2021) Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat Cancer 2:141–156. https://doi.org/10.1038/s43018-020-00159-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Migliozzi S, Oh YT, Hasanain M et al (2023) Integrative multi-omics networks identify PKCδ and DNA-PK as master kinases of glioblastoma subtypes and guide targeted cancer therapy. Nat Cancer 4:181–202. https://doi.org/10.1038/s43018-022-00510-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strickland M, Stoll EA (2017) Metabolic reprogramming in Glioma. Front Cell Dev Biol 5:43. https://doi.org/10.3389/fcell.2017.00043

Article  PubMed  PubMed Central  Google Scholar 

Virtuoso A, Giovannoni R, De Luca C et al (2021) The Glioblastoma Microenvironment: morphology, metabolism, and Molecular Signature of Glial Dynamics to Discover metabolic rewiring sequence. Int J Mol Sci 22:3301. https://doi.org/10.3390/ijms22073301

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, Cui L, Lu S, Xu S (2024) Amino acid metabolism in tumor biology and therapy. Cell Death Dis 15:1–18. https://doi.org/10.1038/s41419-024-06435-w

Article  Google Scholar 

Chen S, Jiang J, Shen A et al (2022) Rewired metabolism of amino acids and its roles in Glioma Pathology. Metabolites 12:918. https://doi.org/10.3390/metabo12100918

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tiwari V, Daoud EV, Hatanpaa KJ et al (2020) Glycine by MR spectroscopy is an imaging biomarker of glioma aggressiveness. Neuro Oncol 22:1018–1029. https://doi.org/10.1093/neuonc/noaa034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ekici S, Risk BB, Neill SG et al (2020) Characterization of dysregulated glutamine metabolism in human glioma tissue with 1H NMR. Sci Rep 10:20435. https://doi.org/10.1038/s41598-020-76982-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wenger KJ, Wagner M, Harter PN et al (2020) Maintenance of Energy Homeostasis during Calorically Restricted Ketogenic Diet and Fasting-MR-Spectroscopic insights from the ERGO2 trial. Cancers 12:3549. https://doi.org/10.3390/cancers12123549

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alcicek S, Divé I, Thomas D et al (2024) 2D 1H sLASER long-TE and 3D 31P chemical shift imaging at 3T MRI for monitoring fasting-induced changes in brain tumor tissue. JMRI https://doi.org/10.1002/JMRI.29422

Graaf RA (2007) In Vivo NMR Spectroscopy: Principles and Techniques: 2nd Edition 1–570. https://doi.org/10.1002/9780470512968

Talati P, El-Abtah M, Kim D et al (2021) MR spectroscopic imaging predicts early response to anti-angiogenic therapy in recurrent glioblastoma. Neuro-Oncology Adv 3:vdab060. https://doi.org/10.1093/noajnl/vdab060

Article  Google Scholar 

Firdous S, Abid R, Nawaz Z et al (2021) Dysregulated alanine as a potential predictive marker of Glioma-An insight from untargeted HRMAS-NMR and machine Learning Data. Metabolites 11:507. https://doi.org/10.3390/metabo11080507

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henning A (2017) In Vivo1H MRS Applications. In: Lindon JC, Tranter GE, Koppenaal DW (eds) Encyclopedia of Spectroscopy and Spectrometry (Third Edition). Academic Press, Oxford, pp 192–198

Choi C, Ganji SK, DeBerardinis RJ et al (2011) Measurement of glycine in the human brain in vivo by 1H-MRS at 3 T: application in brain tumors. Magn Reson Med 66:609–618. https://doi.org/10.1002/mrm.22857

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hattingen E, Raab P, Franz K et al (2008) Myo-Inositol: a marker of reactive astrogliosis in glial tumors? NMR Biomed 21:233–241. https://doi.org/10.1002/nbm.1186

Article  CAS  PubMed  Google Scholar 

Haris M, Cai K, Singh A et al (2011) In vivo mapping of Brain Myo-Inositol. NeuroImage 54:2079–2085. https://doi.org/10.1016/j.neuroimage.2010.10.017

Article  CAS  PubMed  Google Scholar 

Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of Tumours of the Central Nervous System. Acta Neuropathol 114:97–109. https://doi.org/10.1007/s00401-007-0243-4

Article  PubMed  PubMed Central  Google Scholar 

Choi C, Ganji SK, DeBerardinis RJ et al (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated glioma patients. Nat Med 18:624–629. https://doi.org/10.1038/nm.2682

Article  CAS  PubMed  PubMed Central  Google Scholar 

Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679. https://doi.org/10.1002/mrm.1910300604

Article  CAS  PubMed  Google Scholar 

Öz G, Deelchand DK, Wijnen JP et al (2021) Advanced single voxel 1H magnetic resonance spectroscopy techniques in humans: experts’ consensus recommendations. NMR Biomed 34. https://doi.org/10.1002/nbm.4236

Barker P, Bizzi A, De Stefano N et al (2009) Clinical MR Spectroscopy: Techniques and Applications 1–264. https://doi.org/10.1017/CBO9780511770647

Kreis R (2016) The trouble with quality filtering based on relative Cramér-Rao lower bounds. Magn Reson Med 75:15–18. https://doi.org/10.1002/mrm.25568

Article  PubMed  Google Scholar 

Wenger KJ, Hattingen E, Franz K et al (2019) In vivo metabolic profiles as determined by 31P and short TE 1H MR-Spectroscopy: no difference between patients with IDH Wildtype and IDH Mutant Gliomas. Clin Neuroradiol 29:27–36. https://doi.org/10.1007/s00062-017-0630-8

Article  PubMed  Google Scholar 

Wenger KJ, Steinbach JP, Bähr O et al (2020) Lower lactate levels and lower intracellular pH in patients with IDH -Mutant versus wild-type gliomas. AJNR Am J Neuroradiol 41:1414–1422. https://doi.org/10.3174/ajnr.A6633

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wenger KJ, Hattingen E, Harter PN et al (2019) Fitting algorithms and baseline correction influence the results of non-invasive in vivo quantitation of 2-hydroxyglutarate with 1H-MRS. NMR Biomed 32:e4027. https://doi.org/10.1002/nbm.4027

Article  CAS  PubMed  Google Scholar 

Mlynárik V, Gruber S, Moser E (2001) Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14:325–331. https://doi.org/10.1002/nbm.713

Article  PubMed  Google Scholar 

Edden RAE, Puts NAJ, Harris AD et al (2014) Gannet: a batch-Processing Tool for the quantitative analysis of Gamma-Aminobutyric acid–edited MR Spectroscopy Spectra. J Magn Reson Imaging 40:1445–1452. https://doi.org/10.1002/jmri.24478

Article  PubMed 

留言 (0)

沒有登入
gif