Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS (2023) CBTRUS Statistical Report: primary brain and other Central Nervous System tumors diagnosed in the United States in 2016–2020. Neuro Oncol 25(12 Suppl 2):iv1–iv99. https://doi.org/10.1093/neuonc/noad149
Article PubMed PubMed Central Google Scholar
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2021) The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106
Article PubMed PubMed Central CAS Google Scholar
Goldbrunner R, Stavrinou P, Jenkinson MD, Sahm F, Mawrin C, Weber DC, Preusser M, Minniti G, Lund-Johansen M, Lefranc F, Houdart E, Sallabanda K, Le Rhun E, Nieuwenhuizen D, Tabatabai G, Soffietti R, Weller M (2021) EANO guideline on the diagnosis and management of meningiomas. Neuro Oncol 23(11):1821–1834. https://doi.org/10.1093/neuonc/noab150
Article PubMed PubMed Central CAS Google Scholar
Behbahani M, Skeie GO, Eide GE, Hausken A, Lund-Johansen M, Skeie BS (2019) A prospective study of the natural history of incidental meningioma-hold your horses! Neurooncol Pract 6(6):438–450. https://doi.org/10.1093/nop/npz011
Article PubMed PubMed Central Google Scholar
Russo L, Charles-Davies D, Bottazzi S, Sala E, Boldrini L (2024) Radiomics for clinical decision support in radiation oncology. Clin Oncol (R Coll Radiol) 36(8):e269–e281. https://doi.org/10.1016/j.clon.2024.03.003
Article PubMed CAS Google Scholar
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446. https://doi.org/10.1016/j.ejca.2011.11.036
Article PubMed PubMed Central Google Scholar
Horvat N, Papanikolaou N, Koh DM (2024) Radiomics beyond the hype: a critical evaluation toward oncologic clinical use. Radiol Artif Intell 6(4):e230437. https://doi.org/10.1148/ryai.230437
Article PubMed PubMed Central Google Scholar
Ugga L, Spadarella G, Pinto L, Cuocolo R, Brunetti A (2022) Meningioma Radiomics: at the Nexus of Imaging, Pathology and Biomolecular characterization. Cancers (Basel) 14(11):2605. https://doi.org/10.3390/cancers14112605
Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, Mattonen SA, El Naqa I (2020) Machine and deep learning methods for radiomics. Med Phys 47(5):e185–e202. https://doi.org/10.1002/mp.13678
Yang L, Xu P, Zhang Y, Cui N, Wang M, Peng M, Gao C, Wang T (2022) A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma. Neuroradiology 64(7):1373–1382. https://doi.org/10.1007/s00234-022-02894-0
Chen H, Li S, Zhang Y, Liu L, Lv X, Yi Y, Ruan G, Ke C, Feng Y (2022) Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study. Eur Radiol 32(10):7248–7259. https://doi.org/10.1007/s00330-022-08749-9
Zhu Y, Man C, Gong L, Dong D, Yu X, Wang S, Fang M, Wang S, Fang X, Chen X, Tian J (2019) A deep learning radiomics model for preoperative grading in meningioma. Eur J Radiol 116:128–134. https://doi.org/10.1016/j.ejrad.2019.04.022
Xu J, Yu Y, Li Q, Wu Z, Xia L, Miao Y, Lu X, Wu J, Zheng W, Su Z, Zhu Z (2021) Radiomic features as a risk factor for early postoperative seizure in patients with meningioma. Seizure 93:120–126. https://doi.org/10.1016/j.seizure.2021.10.012
Mandelbrot B (1982) The Fractal geometry of Nature. W. H. Freeman and Company, Britain
Ghatak S, Chakraborti S, Gupta M, Dutta S, Pati SK, Bhattacharya A (2023) Fractal Dimension-based infection detection in chest X-ray images. Appl Biochem Biotechnol 195(4):2196–2215. https://doi.org/10.1007/s12010-022-04108-y
Article PubMed CAS Google Scholar
Madan CR, Kensinger EA (2016) Cortical complexity as a measure of age-related brain atrophy. Neuroimage.;134:617–629. https://doi.org/10.1016/j.neuroimage.2016.04.029. Epub 2016 Apr 19. Erratum in: Neuroimage. 2017;155:625. https://doi.org/10.1016/j.neuroimage.2017.05.040
Roura E, Maclair G, Andorrà M, Juanals F, Pulido-Valdeolivas I, Saiz A, Blanco Y, Sepulveda M, Llufriu S, Martínez-Heras E, Solana E, Martinez-Lapiscina EH, Villoslada P (2021) Cortical fractal dimension predicts disability worsening in multiple sclerosis patients. Neuroimage Clin 30:102653. https://doi.org/10.1016/j.nicl.2021.102653
Article PubMed PubMed Central Google Scholar
Rowland C, Smith JH, Moslehi S, Harland B, Dalrymple-Alford J, Taylor RP (2023) Neuron Arbor geometry is sensitive to the limited-range fractal properties of their dendrites. Front Netw Physiol 3:1072815. https://doi.org/10.3389/fnetp.2023.1072815
Article PubMed PubMed Central Google Scholar
Smith JH, Rowland C, Harland B, Moslehi S, Montgomery RD, Schobert K, Watterson WJ, Dalrymple-Alford J, Taylor RP (2021) How neurons exploit fractal geometry to optimize their network connectivity. Sci Rep 11(1):2332. https://doi.org/10.1038/s41598-021-81421-2
Article PubMed PubMed Central CAS Google Scholar
Liu S, Fan X, Zhang C, Wang Z, Li S, Wang Y, Qiu X, Jiang T (2019) MR imaging based fractal analysis for differentiating primary CNS lymphoma and glioblastoma. Eur Radiol 29(3):1348–1354. https://doi.org/10.1007/s00330-018-5658-x. Epub 2018 Aug 30
Smitha KA, Gupta AK, Jayasree RS (2015) Fractal analysis: fractal dimension and lacunarity from MR images for differentiating the grades of glioma. Phys Med Biol 60(17):6937–6947. https://doi.org/10.1088/0031-9155/60/17/6937. Epub 2015 Aug 25
Article PubMed CAS Google Scholar
Czyz M, Radwan H, Li JY, Filippi CG, Tykocki T, Schulder M (2017) Fractal Analysis May improve the preoperative identification of atypical meningiomas. Neurosurgery 80(2):300–308. https://doi.org/10.1093/neuros/nyw030
Captur G, Karperien AL, Li C, Zemrak F, Tobon-Gomez C, Gao X, Bluemke DA, Elliott PM, Petersen SE, Moon JC (2015) Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation. J Cardiovasc Magn Reson 17(1):80. https://doi.org/10.1186/s12968-015-0179-0
Article PubMed PubMed Central Google Scholar
Meregalli V, Alberti F, Madan CR, Meneguzzo P, Miola A, Trevisan N, Sambataro F, Favaro A, Collantoni E (2022) Cortical complexity estimation using fractal dimension: a systematic review of the literature on clinical and nonclinical samples. Eur J Neurosci 55(6):1547–1583. https://doi.org/10.1111/ejn.15631
Article PubMed PubMed Central CAS Google Scholar
Sánchez J, Martín-Landrove M (2022) Morphological and Fractal properties of Brain tumors. Front Physiol 13:878391. https://doi.org/10.3389/fphys.2022.878391
Article PubMed PubMed Central Google Scholar
Won SY, Lee JH, Lee N, Park YW, Ahn SS, Kim J, Chang JH, Kim SH, Lee SK (2022) Three-dimensional fractal dimension and lacunarity features may noninvasively predict TERT promoter mutation status in grade 2 meningiomas. PLoS ONE 17(10):e0276342. https://doi.org/10.1371/journal.pone.0276342
Article PubMed PubMed Central CAS Google Scholar
Custer BS, Koepsell TD, Mueller BA (2002) The association between breast carcinoma and meningioma in women. Cancer 94(6):1626–1635. https://doi.org/10.1002/cncr.10410
Article PubMed CAS Google Scholar
Rao G, Giordano SH, Liu J, McCutcheon IE (2009) The association of breast cancer and meningioma in men and women. Neurosurgery 65(3):483–489; discussion 489. https://doi.org/10.1227/01.NEU.0000350876.91495.E0
留言 (0)