Common and contrasting effects of 5-HTergic signaling in pyramidal cells and SOM interneurons of the mouse cortex

Groenewegen HJ, Uylings HB. The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res. 2000;126:3–28. https://doi.org/10.1016/S0079-6123(00)26003-2.

Article  CAS  PubMed  Google Scholar 

Rikhye RV, Gilra A, Halassa MM. Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nat Neurosci. 2018;21:1753–63. https://doi.org/10.1038/s41593-018-0269-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, et al. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell. 2018;175:472–87.e20. https://doi.org/10.1016/j.cell.2018.07.043.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC. Cognitive inflexibility after prefrontal serotonin depletion. Science. 2004;304:878–80. https://doi.org/10.1126/science.1094987.

Article  CAS  PubMed  Google Scholar 

Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM. The subcallosal cingulate gyrus in the context of major depression. Biol Psychiatry. 2011;69:301–8. https://doi.org/10.1016/j.biopsych.2010.09.034.

Article  PubMed  Google Scholar 

Miranda L. Antidepressant and anxiolytic effects of activating 5HT2A receptors in the anterior cingulate cortex and the theoretical mechanisms underlying them - A scoping review of available literature. Brain Res. 2024;1846:149226. https://doi.org/10.1016/j.brainres.2024.149226.

Article  CAS  PubMed  Google Scholar 

Ghaderi A, Brown EC, Clark DL, Ramasubbu R, Kiss ZHT, Protzner AB. Role of the serotonergic system in subcallosal DBS for treatment-resistant depression. Brain Stimul. 2022;15:211–3. https://doi.org/10.1016/j.brs.2021.12.009.

Article  CAS  PubMed  Google Scholar 

Rojas PS, Fiedler JL. What Do We Really Know About 5-HT1A Receptor Signaling in Neuronal Cells? Front Cell Neurosci. 2016;10:272. https://doi.org/10.3389/fncel.2016.00272.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puig MV, Gulledge AT. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol. 2011;44:449–64. https://doi.org/10.1007/s12035-011-8214-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Czyrak A, Czepiel K, Mackowiak M, Chocyk A, Wedzony K. Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Res. 2003;989:42–51. https://doi.org/10.1016/s0006-8993(03)03352-3.

Article  CAS  PubMed  Google Scholar 

DeFelipe J, Arellano JI, Gomez A, Azmitia EC, Munoz A. Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. J Comp Neurol. 2001;433:148–55. https://doi.org/10.1002/cne.1132.

Article  CAS  PubMed  Google Scholar 

Jakab RL, Goldman-Rakic PS. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA. 1998;95:735–40. https://doi.org/10.1073/pnas.95.2.735.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hagberg GB, Blomstrand F, Nilsson M, Tamir H, Hansson E. Stimulation of 5-HT2A receptors on astrocytes in primary culture opens voltage-independent Ca2+ channels. Neurochem Int. 1998;32:153–62. https://doi.org/10.1016/s0197-0186(97)00087-9.

Article  CAS  PubMed  Google Scholar 

Stephens EK, Baker AL, Gulledge AT. Mechanisms Underlying Serotonergic Excitation of Callosal Projection Neurons in the Mouse Medial Prefrontal Cortex. Front Neural Circuits. 2018;12:2. https://doi.org/10.3389/fncir.2018.00002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santello M, Bisco A, Nevian NE, Lacivita E, Leopoldo M, Nevian T. The brain-penetrant 5-HT(7) receptor agonist LP-211 reduces the sensory and affective components of neuropathic pain. Neurobiol Dis. 2017;106:214–21. https://doi.org/10.1016/j.nbd.2017.07.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puig MV, Watakabe A, Ushimaru M, Yamamori T, Kawaguchi Y. Serotonin modulates fast-spiking interneuron and synchronous activity in the rat prefrontal cortex through 5-HT1A and 5-HT2A receptors. J Neurosci. 2010;30:2211–22. https://doi.org/10.1523/JNEUROSCI.3335-09.2010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goodfellow NM, Benekareddy M, Vaidya VA, Lambe EK. Layer II/III of the prefrontal cortex: Inhibition by the serotonin 5-HT1A receptor in development and stress. J Neurosci. 2009;29:10094–103. https://doi.org/10.1523/JNEUROSCI.1960-09.2009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Araneda R, Andrade R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience. 1991;40:399–412. https://doi.org/10.1016/0306-4522(91)90128-b.

Article  CAS  PubMed  Google Scholar 

Amargos-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, et al. Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex. 2004;14:281–99. https://doi.org/10.1093/cercor/bhg128.

Article  PubMed  Google Scholar 

Avesar D, Gulledge AT. Selective serotonergic excitation of callosal projection neurons. Front Neural Circuits. 2012;6:12.

Article  PubMed  PubMed Central  Google Scholar 

Elliott MC, Tanaka PM, Schwark RW, Andrade R Serotonin Differentially Regulates L5 Pyramidal Cell Classes of the Medial Prefrontal Cortex in Rats and Mice. eNeuro. 2018;5. https://doi.org/10.1523/ENEURO.0305-17.2018.

Stephens EK, Avesar D, Gulledge AT. Activity-dependent serotonergic excitation of callosal projection neurons in the mouse prefrontal cortex. Front Neural Circuits. 2014;8:97 https://doi.org/10.3389/fncir.2014.00097.

Article  PubMed  PubMed Central  Google Scholar 

Hostetler RE, Hu H, Agmon A Genetically Defined Subtypes of Somatostatin-Containing Cortical Interneurons. eNeuro. 2023;10. https://doi.org/10.1523/ENEURO.0204-23.2023.

Tremblay R, Lee S, Rudy B. GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits. Neuron. 2016;91:260–92. https://doi.org/10.1016/j.neuron.2016.06.033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Filippo R, Rost BR, Stumpf A, Cooper C, Tukker JJ, Harms C, et al. Somatostatin interneurons activated by 5-HT(2A) receptor suppress slow oscillations in medial entorhinal cortex. Elife. 2021;10. https://doi.org/10.7554/eLife.66960.

Kim D, Jeong H, Lee J, Ghim JW, Her ES, Lee SH, et al. Distinct Roles of Parvalbumin- and Somatostatin-Expressing Interneurons in Working Memory. Neuron. 2016;92:902–15. https://doi.org/10.1016/j.neuron.2016.09.023.

Article  CAS  PubMed  Google Scholar 

Williams GV, Rao SG, Goldman-Rakic PS. The physiological role of 5-HT2A receptors in working memory. J Neurosci. 2002;22:2843–54. https://doi.org/10.1523/JNEUROSCI.22-07-02843.2002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seney ML, Tripp A, McCune S, Lewis DA, Sibille E. Laminar and cellular analyses of reduced somatostatin gene expression in the subgenual anterior cingulate cortex in major depression. Neurobiol Dis. 2015;73:213–9. https://doi.org/10.1016/j.nbd.2014.10.005.

Article  CAS  PubMed  Google Scholar 

Tripp A, Kota RS, Lewis DA, Sibille E. Reduced somatostatin in subgenual anterior cingulate cortex in major depression. Neurobiol Dis. 2011;42:116–24. https://doi.org/10.1016/j.nbd.2011.01.014.

Article 

留言 (0)

沒有登入
gif