Pavlova M. Circadian rhythm sleep-wake disorders. Continuum. 2017;23:1051–63.
Cho K. Chronic ‘jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci. 2001;4:567–8.
Article CAS PubMed Google Scholar
Cho K, Ennaceur A, Cole JC, Suh CK. Chronic jet lag produces cognitive deficits. J Neurosci. 2000;20:RC66.
Article CAS PubMed Google Scholar
Alhola P, Polo-Kantola P. Sleep deprivation: impact on cognitive performance. Neuropsychiatr Dis Treat. 2007;3:553–67.
Sun S-Y, Chen G-H. Treatment of circadian rhythm sleep–wake disorders. Curr Neuropharmacol. 2022;20:1022–34.
Article CAS PubMed Google Scholar
Kott J, Leach G, Yan L. Direction-dependent effects of chronic “jet-lag” on hippocampal neurogenesis. Neurosci Lett. 2012;515:177–80.
Article CAS PubMed Google Scholar
Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci USA. 2011;108:1657–62.
Article CAS PubMed Google Scholar
Lazzerini Ospri L, Zhan JJ, Thomsen MB, Wang H, Komal R, Tang Q, et al. Light affects the prefrontal cortex via intrinsically photosensitive retinal ganglion cells. Sci Adv. 2024;10:eadh9251.
Article CAS PubMed Google Scholar
Roberts BL, Karatsoreos IN. Circadian desynchronization disrupts physiological rhythms of prefrontal cortex pyramidal neurons in mice. Sci Rep. 2023;13:9181.
Article CAS PubMed Google Scholar
Otsuka T, Thi Le H, Kohsaka A, Sato F, Ihara H, Nakao T, et al. Adverse effects of circadian disorganization on mood and molecular rhythms in the prefrontal cortex of mice. Neuroscience. 2020;432:44–54.
Article CAS PubMed Google Scholar
Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.
Bizon JL, Foster TC, Alexander GE, Glisky EL. Characterizing cognitive aging of working memory and executive function in animal models. Front Aging Neurosci. 2012;4:19.
Article PubMed PubMed Central Google Scholar
Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM. Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J Neurosci. 2008;28:11124–30.
Article CAS PubMed PubMed Central Google Scholar
Heisler JM, Morales J, Donegan JJ, Jett JD, Redus L, O’Connor JC. The attentional set shifting task: a measure of cognitive flexibility in mice. J Vis Exp. 2015;96:51944.
Prieur EAK, Jadavji NM. Assessing spatial working memory using the spontaneous alternation Y-maze test in aged male mice. Bio Protoc. 2019;9:e3162.
Article PubMed PubMed Central Google Scholar
Kraeuter A-K, Guest PC, Sarnyai Z. The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol. 2019;1916:105–11.
Article CAS PubMed Google Scholar
Lecea, de L, Kilduff TS, Peyron C, Gao X, Foye PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95:322–7.
Article PubMed PubMed Central Google Scholar
Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18:9996–10015.
Article CAS PubMed PubMed Central Google Scholar
Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92:573–85.
Article CAS PubMed Google Scholar
James MH, Mahler SV, Moorman DE, Aston-Jones G. A decade of orexin/hypocretin and addiction: where are we now? Curr Top Behav Neurosci. 2017;33:247–81.
Grafe LA, Bhatnagar S. Orexins and stress. Front Neuroendocrinol. 2018;51:132–45.
Article CAS PubMed Google Scholar
Messina G, Dalia C, Tafuri D, Monda V, Palmieri F, Dato A, et al. Orexin-A controls sympathetic activity and eating behavior. Front Psychol. 2014;5:997.
España RA, Scammell TE. Sleep neurobiology from a clinical perspective. Sleep. 2011;34:845–58.
Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest. 2014;146:1387–94.
Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437–51.
Article CAS PubMed Google Scholar
Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98:365–76.
Article CAS PubMed Google Scholar
Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27:469–74.
Article CAS PubMed Google Scholar
Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6:991–7.
Article CAS PubMed Google Scholar
Durairaja A, Pandey S, Kahl E, Fendt M. Nasal administration of orexin A partially rescues dizocilpine-induced cognitive impairments in female C57BL/6 J mice. Behav Brain Res. 2023;450:114491.
Article CAS PubMed Google Scholar
Calva CB, Fayyaz H, Fadel JR. Effects of intranasal orexin-A (Hypocretin-1) administration on neuronal activation, neurochemistry, and attention in aged rats. Front Aging Neurosci. 2019;11:362.
Article CAS PubMed Google Scholar
Durairaja A, Fendt M. Orexin deficiency modulates cognitive flexibility in a sex-dependent manner. Genes Brain Behav. 2021;20:e12707.
Article CAS PubMed Google Scholar
Durairaja A, Steinecke C-S, Fendt M. Intracerebroventricular infusion of the selective orexin 1 receptor antagonist SB-334867 impairs cognitive flexibility in a sex-dependent manner. Behav Brain Res. 2022;424:113791.
Article CAS PubMed Google Scholar
Kim MJ, Lee JH, Duffy JF. Circadian rhythm sleep disorders. J Clin Outcomes Manag. 2013;20:513–28.
He M, Zhou W, Liu K, Wang X, Liu C, Shi F, et al. The prevalence of male rotating shift work correlates with reduced total fertility rate: an ecological study of 54,734 reproductive-aged males in 35 European countries between 2000 and 2015. Chronobiol Int. 2021;38:1072–82.
留言 (0)