Caballero, M. T. et al. Uncovering causes of childhood death using the minimally invasive autopsy at the community level in an urban vulnerable setting of Argentina: a population-based study. Clin. Infect. Dis. 73, S435–S441 (2021).
Article PubMed PubMed Central Google Scholar
Chidlow, G. R. et al. Respiratory viral pathogens associated with lower respiratory tract disease among young children in the highlands of Papua New Guinea. J. Clin. Virol. 54, 235–239 (2012).
Article PubMed PubMed Central Google Scholar
Pomat, W. S. et al. Safety and immunogenicity of neonatal pneumococcal conjugate vaccination in Papua New Guinean children: a randomised controlled trial. PLoS ONE 8, e56698 (2013).
Article CAS PubMed PubMed Central Google Scholar
Bergstrom, A. et al. A Neolithic expansion, but strong genetic structure, in the independent history of New Guinea. Science 357, 1160–1163 (2017).
Article PubMed PubMed Central Google Scholar
Brucato, N. et al. Papua New Guinean genomes reveal the complex settlement of North Sahul. Mol. Biol. Evol. 38, 5107–5121 (2021).
Article CAS PubMed PubMed Central Google Scholar
Guerra, R. M. & Pagliarini, D. J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem. Sci. 48, 463–476 (2023).
Article CAS PubMed PubMed Central Google Scholar
Emmanuele, V. et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch. Neurol. 69, 978–983 (2012).
Article PubMed PubMed Central Google Scholar
Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2024).
Article CAS PubMed Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Article CAS PubMed PubMed Central Google Scholar
Licitra, F. & Puccio, H. An overview of current mouse models recapitulating coenzyme q10 deficiency syndrome. Mol. Syndromol. 5, 180–186 (2014).
Article CAS PubMed PubMed Central Google Scholar
Ben-Meir, A. et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14, 887–895 (2015).
Article CAS PubMed PubMed Central Google Scholar
Wang, Y., Oxer, D. & Hekimi, S. Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis. Nat. Commun. 6, 6393 (2015).
Article CAS PubMed Google Scholar
Fazakerley, D. J. et al. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. eLife 7, e32111 (2018).
Article PubMed PubMed Central Google Scholar
Bewley, M. A. et al. Impaired mitochondrial microbicidal responses in chronic obstructive pulmonary disease macrophages. Am. J. Respir. Crit. Care Med. 196, 845–855 (2017).
Article CAS PubMed PubMed Central Google Scholar
Heeringa, S. F. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 121, 2013–2024 (2011).
Article CAS PubMed PubMed Central Google Scholar
Doimo, M. et al. Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency. Biochim. Biophys. Acta 1842, 1–6 (2014).
Article CAS PubMed PubMed Central Google Scholar
Park, E. et al. COQ6 mutations in children with steroid-resistant focal segmental glomerulosclerosis and sensorineural hearing loss. Am. J. Kidney Dis. 70, 139–144 (2017).
Article CAS PubMed Google Scholar
Liu, J., Zhou, G., Wang, X. & Liu, D. Metabolic reprogramming consequences of sepsis: adaptations and contradictions. Cell. Mol. Life Sci. 79, 456 (2022).
Article CAS PubMed PubMed Central Google Scholar
Vandewalle, J. & Libert, C. Sepsis: a failing starvation response. Trends Endocrinol. Metab. 33, 292–304 (2022).
Article CAS PubMed Google Scholar
Long, Q., Huang, L., Huang, K. & Yang, Q. Assessing mitochondrial bioenergetics in isolated mitochondria from mouse heart tissues using Oroboros 2k-Oxygraph. Methods Mol. Biol. 1966, 237–246 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wang, Z. et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 92, 1369–1377 (2010).
Article CAS PubMed PubMed Central Google Scholar
Shenoy, A. T. et al. Severity and properties of cardiac damage caused by Streptococcus pneumoniae are strain dependent. PLoS ONE 13, e0204032 (2018).
Article PubMed PubMed Central Google Scholar
Beno, S. M. et al. Inhibition of necroptosis to prevent long-term cardiac damage during pneumococcal pneumonia and invasive disease. J. Infect. Dis. 222, 1882–1893 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kruckow, K. L., Zhao, K., Bowdish, D. M. E. & Orihuela, C. J. Acute organ injury and long-term sequelae of severe pneumococcal infections. Pneumonia 15, 5 (2023).
Article PubMed PubMed Central Google Scholar
Platt, M. P., Lin, Y. H., Wiscovitch-Russo, R., Yu, Y. & Gonzalez-Juarbe, N. Pandemic Influenza infection promotes Streptococcus pneumoniae infiltration, necrotic damage, and proteomic remodeling in the heart. mBio 13, e0325721 (2022).
Viasus, D. et al. Risk stratification and prognosis of acute cardiac events in hospitalized adults with community-acquired pneumonia. J. Infect. 66, 27–33 (2013).
Musher, D. M., Rueda, A. M., Kaka, A. S. & Mapara, S. M. The association between pneumococcal pneumonia and acute cardiac events. Clin. Infect. Dis. 45, 158–165 (2007).
Perry, T. W. et al. Incidence of cardiovascular events after hospital admission for pneumonia. Am. J. Med. 124, 244–251 (2011).
Article PubMed PubMed Central Google Scholar
Bazaz, R., Marriott, H. M., Francis, S. E. & Dockrell, D. H. Mechanistic links between acute respiratory tract infections and acute coronary syndromes. J. Infect. 66, 1–17 (2013).
Busch, C. J., Favret, J., Geirsdóttir, L., Molawi, K. & Sieweke, M. H. Isolation and long-term cultivation of mouse alveolar macrophages. Bio. Protoc. 9, e3302 (2019).
Article CAS PubMed PubMed Central Google Scholar
Recio, R. et al. Predictors of mortality in bloodstream infections caused by pseudomonas aeruginosa and impact of antimicrobial resistance and bacterial vi
留言 (0)