UNODC: Global study on homicide 2023. https://www.unodc.org/unodc/en/data-and-analysis/global-study-on-homicide.html. Accessed 08 Mar 2024
Wisevoter: Gun deaths by country 2023. https://wisevoter.com/country-rankings/gun-deaths-by-country. Accessed 08 Mar 2024
Kleypas DA, Badiye A (2024) Evidence collection vol 2, pp 113–116. https://pubmed.ncbi.nlm.nih.gov/28722882/
Shrestha R, Kanchan T, Krishan K (2024) Gunshot wounds forensic pathology, pp 1–8. StatPearls Publishing, Treasure Island, Florida, United States. http://www.ncbi.nlm.nih.gov/pubmed/32310579
Denton JS, Segovia A, Filkins JA (2006) Practical pathology of gunshot wounds. Arch Pathol Lab Med 130(9):1283–9. https://doi.org/10.5858/2006-130-1283-PPOGW
Di Maio VJM (2015) Gunshot wounds: practical aspects of firearms, ballistics, and forensic techniques, 3rd edn. CRC Press, Boca Raton, Florida, United States, p 377
Saukko PJ, Knight B (2016) Knight’s Forensic Pathology, 4th edn. CRC Press, Boca Raton, Florida, United States
Adelson L (1961) A microscopic study of dermal gunshot wounds. Am J Clin Pathol 35(5):393–402. https://doi.org/10.1093/ajcp/35.5.393
Article CAS PubMed Google Scholar
Dror IE, Pierce ML (2020) ISO standards addressing issues of bias and impartiality in forensic work. J Forensic Sci 65(3):800–808. https://doi.org/10.1111/1556-4029.14265
Vodanović M, Subašić M, Milošević D, Galić I, Brkić H (2023) Artificial intelligence in forensic medicine and forensic dentistry. J Forensic Odonto-Stomatol 41(2):30–41
Tournois L, Trousset V, Hatsch D, Delabarde T, Ludes B, Lefèvre T (2023) Artificial intelligence in the practice of forensic medicine: a scoping review. Int J Legal Med. https://doi.org/10.1007/s00414-023-03140-9
Article PubMed PubMed Central Google Scholar
Lefèvre T, Tournois L (2023) Artificial intelligence and diagnostics in medicine and forensic science. Diagnostics 13(23):1–12. https://doi.org/10.3390/diagnostics13233554
Wankhade TD, Ingale SW, Mohite PM, Bankar NJ (2022) Artificial intelligence in forensic medicine and toxicology: the future of forensic medicine. Cureus 14(8). https://doi.org/10.7759/cureus.28376
Galante N, Cotroneo R, Furci D, Lodetti G, Casali MB (2022) Applications of artificial intelligence in forensic sciences: current potential benefits, limitations and perspectives. Int J Legal Med 445–458. https://doi.org/10.1007/s00414-022-02928-5
Margagliotti G, Bollé T (2019) Machine learning & forensic science. Forensic Sci Int 298:138–139. https://doi.org/10.1016/j.forsciint.2019.02.045
Cheng J, Schmidt C, Wilson A, Wang Z, Hao W, Pantanowitz J, Morris C, Tashjian R, Pantanowitz L (2024) Artificial intelligence for human gunshot wound classification. J Pathol Inform 15:100361. https://doi.org/10.1016/j.jpi.2023.100361
Oura P, Junno A, Junno J-A (2021) Deep learning in forensic gunshot wound interpretation—a proof-of-concept study. Int J Legal Med 135:2101–2106. https://doi.org/10.1007/s00414-021-02566-3
Article PubMed PubMed Central Google Scholar
Molina DK, Dimaio V, Cave R (2013) Gunshot wounds: a review of firearm type, range, and location as pertaining to manner of death. Am J Forensic Med Pathol 34:366–371. https://doi.org/10.1097/PAF.0000000000000065
Marcel S, Rodriguez Y (2010) Torchvision the machine-vision package of torch. In: Bimbo AD, Chang S, Smeulders AWM (eds) Proceedings of the 18th international conference on multimedia 2010, Firenze, Italy, October 25-29, 2010, pp 1485–1488. Association for Computing Machinery, New York, New York, United States. https://doi.org/10.1145/1873951.1874254
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang EZ, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp 8024–8035. https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
Tietz M, Fan TJ, Nouri D, Bossan B (2017) skorch Developers: Skorch: a scikit-learn compatible neural network library that wraps PyTorch. https://skorch.readthedocs.io/en/stable/
Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013) Api design for machine learning software: experiences from the scikit-learn project, vol. abs/1309.0238. http://dblp.uni-trier.de/db/journals/corr/corr1309.html#BuitinckLBPMGNPGGLVJHV13
Mumuni A, Mumuni F (2022) Data augmentation: A comprehensive survey of modern approaches. Array 16:100258. https://doi.org/10.1016/J.ARRAY.2022.100258
Hataya R, Zdenek J, Yoshizoe K, Nakayama H (2020) Faster autoaugment: learning augmentation strategies using backpropagation. In: Vedaldi A, Bischof H, Brox T, Frahm J (eds) Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXV. Lecture Notes in Computer Science, vol 12370, pp 1–16. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-030-58595-2_1
Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA (2020) Albumentations: fast and flexible image augmentations. Information 11(2):125. https://doi.org/10.3390/INFO11020125
Batista GEAPA, Prati RC, Monard MC (2004) A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor 6(1):20–29. https://doi.org/10.1145/1007730.1007735
Lemaître G, Nogueira F, Aridas CK (2017) Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J Mach Learn Res 18(17):1–5
Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386
Huang G, Liu Z, Maaten L, Weinberger KQ (2017) Densely connected convolutional networks, pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243
Tan M, Le QV (2019) Efficientnet: rethinking model scaling for convolutional neural networks, vol 97, pp 6105–6114
Tan M, Le QV (2021) Efficientnetv2: smaller models and faster training, vol 139, pp 10096–10106
Tu Z, Talebi H, Zhang H, Yang F, Milanfar P, Bovik AC, Li Y (2022) Maxvit: multi-axis vision transformer, vol 13684, pp 459–479. https://doi.org/10.1007/978-3-031-20053-3_27
Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV (2019) Mnasnet: platform-aware neural architecture search for mobile, pp 2820–2828. https://doi.org/10.1109/CVPR.2019.00293
Sandler M, Howard AG, Zhu M, Zhmoginov A, Chen L (2018) Mobilenetv2: inverted residuals and linear bottlenecks, pp 4510–4520. https://doi.org/10.1109/CVPR.2018.00474
Howard A, Pang R, Adam H, Le QV, Sandler M, Chen B, Wang W, Chen L, Tan M, Chu G, Vasudevan V, Zhu Y (2019) Searching for mobilenetv3, pp 1314–1324. https://doi.org/10.1109/ICCV.2019.00140
Radosavovic I, Kosaraju RP, Girshick RB, He K, Dollár P (2020) Designing network design spaces, pp 10425–10433. https://doi.org/10.1109/CVPR42600.2020.01044
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition, pp 770–778. https://doi.org/10.1109/CVPR.2016.90
Ma N, Zhang X, Zheng H, Sun J (2018) Shufflenet V2: practical guidelines for efficient CNN architecture design, vol 11218, pp 122–138. https://doi.org/10.1007/978-3-030-01264-9_8
Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<1mb model size. CoRR arXiv:1602.07360
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: hierarchical vision transformer using shifted windows, pp 9992–10002. https://doi.org/10.1109/ICCV48922.2021.00986
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Bengio Y, LeCun Y (eds) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. arXiv:1409.1556
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2021) An image is worth 16x16 words: transformers for image recognition at scale. In: International conference on learning representations. https://openreview.net/forum?id=YicbFdNTTy
Phelps C (1897) Traumatic injuries of the brain and its membranes. Appleton, New York, New York, United States
Pircher R, Preiß D, Pollak S, Thierauf-Emberger A, Perdekamp MG, Geisenberger D (2017) The influence of the bullet shape on the width of abrasion collars and the size of gunshot entrance holes. Int J Legal Med 131(2):441–445. https://doi.org/10.1007/s00414-016-1501-6
Rainio J, Lalu K, Ranta H, Penttilä A (2003) Morphology of experimental assault rifle skin wounds. Int J Legal Med 117(1):19–26. https://doi.org/10.1007/s00414-002-0308-9
Bartell TH, Mustoe TA (1989) Animal models of human tissue expansion. Plast Reconstr Surg 83(4):681–6. https://doi.org/10.1097/00006534-198904000-00014
Article CAS PubMed Google Scholar
Piraianu AI, Fulga A, Musat CL, Ciobotaru OR, Poalelungi DG, Stamate E, Ciobotaru O, Fulga I (2023) Enhancing the evidence with algorithms: how artificial intelligence is transforming forensic medicine. Diagnostics 13(18). https://doi.org/10.3390/diagnostics13182992
Smith JC (1964) Investigation of fatal gunshot wounds. Cleve-Marshall Law Rev 13(2):296–308
Svensson A, Wendel O, Nicol JD (1965) Techniques of crime scene investigation. American Elsevier Publishing Company, New York, New York, United States
Mahoney P, Carr D, Arm R, Gibb I, Hunt N, Delaney RJ (2017) Ballistic impacts on an anatomically correct synthetic skull with a surrogate skin/soft tissue layer. Int J Legal Med 1–12. https://doi.org/10.1007/s00414-017-1737-9
Humphrey C, Kumaratilake J (2016) Ballistics and anatomical modelling – a review. Legal Med 23:21–29. https://doi.org/10.1016/j.legalmed.2016.09.002
Ridge MD, Wright V (1966) The directional effects of skin. A bio-engineering study of skin with particular reference to Langer’s lines. J Investig Dermatol 46(4):341–346. https://doi.org/10.1038/jid.1966.54
Article CAS PubMed Google Scholar
Maiden NR, Byard RW (2016) Unpredictable tensile strength biomechanics may limit thawed cadaver use for simulant research. Aust J Forensic Sci 48(1):54–58. https://doi.org/10.1080/00450618.2015.1025842
Gu Q, Tian J, Li X, Jiang S (2022) A novel random forest integrated model for imbalanced data classification problem. Knowl-Based Syst 250:109050. https://doi.org/10.1016/j.knosys.2022.109050
留言 (0)