Computer tomography-based radiomics combined with machine learning for predicting the time since onset of epidural hematoma

Neumayer B, Hassler E, Petrovic A, Widek T, Ogris K, Scheurer E (2014) Age determination of soft tissue hematomas. NMR Biomed 27:1397–1402. https://doi.org/10.1002/nbm.3202

Article  PubMed  Google Scholar 

Li N, Du Q, Bai R, Sun J (2020) Vitality and wound-age estimation in forensic pathology: review and future prospects. Forensic Sci Res 5:15–24. https://doi.org/10.1080/20961790.2018.1445441

Article  PubMed  CAS  Google Scholar 

Nguyen R, Fiest KM, McChesney J et al (2016) The international incidence of traumatic brain injury: a systematic review and meta-analysis. The Canadian Journal of Neurological Sciences Le Journal Canadien Des Sciences Neurologiques 43:774–85. https://doi.org/10.1017/cjn.2016.290

Evaggelakos CI, Alexandri M, Tsellou M, Dona A, Spiliopoulou CA, Papadodima SA (2022) Subdural and epidural hematoma occurrence in relation to the head impact site: an autopsy study. J Forensic Leg Med 85:102283. https://doi.org/10.1016/j.jflm.2021.102283

Article  PubMed  Google Scholar 

Thomsen AH, Leth PM, Hougen HP, Villesen P (2022) Blunt force homicides in Denmark 1992–2016. J Forensic Sci 67:2343–2350. https://doi.org/10.1111/1556-4029.15118

Article  PubMed  PubMed Central  Google Scholar 

Choi DH, Jeong TS, Kim WK (2022) Clinical outcome of patients diagnosed traumatic intracranial epidural hematoma with severe brain injury (Glasgow coma scale ≤ 8) who undergo surgery: a report from the Korean neuro-trauma data bank system. Korean J Neurotrauma 18:153–160. https://doi.org/10.13004/kjnt.2022.18.e62

Article  PubMed  PubMed Central  Google Scholar 

Rosenthal AA, Solomon RJ, Eyerly-Webb SA et al (2017) Traumatic epidural hematoma: patient characteristics and management. Am Surg 83:e438–e40

Article  PubMed  Google Scholar 

Burjorjee JE, Rooney R, Jaeger M (2018) Epidural hematoma following cessation of a direct oral anticoagulant: a case report. Reg Anesth Pain Med 43:313–316. https://doi.org/10.1097/aap.0000000000000738

Article  PubMed  Google Scholar 

Wang W (2016) Minimally invasive surgical treatment of acute epidural hematoma: case series. Biomed Res Int 2016(6507350). https://doi.org/10.1155/2016/6507350

Gekat W, Binder S, Wetzel C, Rothschild MA, Banaschak S (2018) SDH and EDH in children up to 18 years of age-a clinical collective in the view of forensic considerations. Int J Legal Med 132:1719–1727. https://doi.org/10.1007/s00414-018-1889-2

Article  PubMed  Google Scholar 

Zhang S, Wang S, Wan X, Liu S, Shu K, Lei T (2017) Clinical evaluation of post-operative cerebral infarction in traumatic epidural haematoma. Brain Injury 31:215–220. https://doi.org/10.1080/02699052.2016.1227088

Article  PubMed  Google Scholar 

Scheurer E, Schoelzke S (2014) Consent to forensic radiologic examinations by living crime victims. Int J Legal Med 128:323–328. https://doi.org/10.1007/s00414-013-0831-x

Article  PubMed  Google Scholar 

Schuh P, Scheurer E, Fritz K et al (2013) Can clinical CT data improve forensic reconstruction? Int J Legal Med 127:631–638. https://doi.org/10.1007/s00414-013-0830-y

Article  PubMed  CAS  Google Scholar 

Aydemir F, Çekinmez M, Kardeş Ö, Sarıca FB (2016) Rapid spontaneous resolution of acute epidural hematoma: a case report and review of the literature. Balkan Med J 33:373–376. https://doi.org/10.5152/balkanmedj.2016.141020

Article  PubMed  PubMed Central  Google Scholar 

Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. European journal of cancer (Oxford, England: 1990) 48:441-6. https://doi.org/10.1016/j.ejca.2011.11.036

Grossmann P, Stringfield O, El-Hachem N et al (2017) Defining the biological basis of radiomic phenotypes in lung cancer. eLife 6. https://doi.org/10.7554/eLife.23421

Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

Article  PubMed  Google Scholar 

Li H, Xie Y, Wang X, Chen F, Sun J, Jiang X (2019) Radiomics features on non-contrast computed tomography predict early enlargement of spontaneous intracerebral hemorrhage. Clin Neurol Neurosurg 185:105491. https://doi.org/10.1016/j.clineuro.2019.105491

Article  PubMed  Google Scholar 

Yao X, Liao L, Han Y et al (2019) Computerized tomography radiomics features analysis for evaluation of perihematomal edema in basal ganglia hemorrhage. J Craniofac Surg 30:e768–e71. https://doi.org/10.1097/scs.0000000000005765

Article  PubMed  Google Scholar 

Voter AF, Meram E, Garrett JW, Yu JJ (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of intracranial hemorrhage. J Am Coll Radiology: JACR 18:1143–1152. https://doi.org/10.1016/j.jacr.2021.03.005

Article  PubMed  Google Scholar 

Pszczolkowski S, Manzano-Patrón JP, Law ZK et al (2021) Quantitative CT radiomics-based models for prediction of haematoma expansion and poor functional outcome in primary intracerebral haemorrhage. Eur Radiol 31:7945–7959. https://doi.org/10.1007/s00330-021-07826-9

Article  PubMed  PubMed Central  Google Scholar 

Xie H, Ma S, Wang X, Zhang X (2020) Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model. Eur Radiol 30:87–98. https://doi.org/10.1007/s00330-019-06378-3

Article  PubMed  Google Scholar 

Chen Q, Zhu D, Liu J et al (2021) Clinical-radiomics nomogram for risk estimation of early hematoma expansion after acute intracerebral hemorrhage. Acad Radiol 28:307–317. https://doi.org/10.1016/j.acra.2020.02.021

Article  PubMed  Google Scholar 

Case ME (2008) Accidental traumatic head injury in infants and young children. Brain Pathol 18:583–589. https://doi.org/10.1111/j.1750-3639.2008.00203.x

Article  PubMed  PubMed Central  Google Scholar 

Chen NB, Xiong M, Zhou R et al (2022) CT radiomics-based long-term survival prediction for locally advanced non-small cell lung cancer patients treated with concurrent chemoradiotherapy using features from tumor and tumor organismal environment. Radiation Oncol (London England) 17:184. https://doi.org/10.1186/s13014-022-02136-w

Article  CAS  Google Scholar 

De Robertis R, Geraci L, Tomaiuolo L et al (2022) Liver metastases in pancreatic ductal adenocarcinoma: a predictive model based on CT texture analysis. Radiol Med 127:1079–1084. https://doi.org/10.1007/s11547-022-01548-8

Article  PubMed  Google Scholar 

Nioche C, Orlhac F, Boughdad S et al (2018) LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 78:4786–4789. https://doi.org/10.1158/0008-5472.Can-18-0125

Article  PubMed  CAS  Google Scholar 

Chen Y, Chen TW, Wu CQ et al (2019) Radiomics model of contrast-enhanced computed tomography for predicting the recurrence of acute pancreatitis. Eur Radiol 29:4408–4417. https://doi.org/10.1007/s00330-018-5824-1

Article  PubMed  Google Scholar 

Zhu D, Zhang M, Li Q et al (2021) Can perihaematomal radiomics features predict haematoma expansion? Clinical radiology 76:629.e1-.e9. https://doi.org/10.1016/j.crad.2021.03.003

Zhan C, Chen Q, Zhang M et al (2021) Radiomics for intracerebral hemorrhage: are all small hematomas benign? Br J Radiol 94:20201047. https://doi.org/10.1259/bjr.20201047

Article  PubMed  PubMed Central  Google Scholar 

Xu W, Ding Z, Shan Y et al (2020) A nomogram model of radiomics and satellite sign number as imaging predictor for intracranial hematoma expansion. Front NeuroSci 14:491. https://doi.org/10.3389/fnins.2020.00491

Article  PubMed  PubMed Central  Google Scholar 

Zhou Y, Gu HL, Zhang XL, Tian ZF, Xu XQ, Tang WW (2022) Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer. Eur Radiol 32:2540–2551. https://doi.org/10.1007/s00330-021-08326-6

Article  PubMed  Google Scholar 

Song Z, Tang Z, Liu H, Guo D, Cai J, Zhou Z (2021) A clinical-radiomics nomogram may provide a personalized 90-day functional outcome assessment for spontaneous intracerebral hemorrhage. Eur Radiol 31:4949–4959. https://doi.org/10.1007/s00330-021-07828-7

Article  PubMed  Google Scholar 

Xiao B, Ma MY, Duan ZX, Liu JG, Chen RP, Mao Q (2015) Could a traumatic epidural hematoma on early computed tomography tell us about its future development? A multi-center retrospective study in China. J Neurotrauma 32:487–494. https://doi.org/10.1089/neu.2013.3297

Article 

留言 (0)

沒有登入
gif