Mitochondrial Proteome Defined Molecular Pathological Characteristics of Oncocytic Thyroid Tumors

Fagin JA, Krishnamoorthy GP, Landa I. Pathogenesis of cancers derived from thyroid follicular cells. Nat Rev Cancer. 2023 Sep; 23: 631-650. https://doi.org/10.1038/s41568-023-00598-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lloyd RV, Osamura RY, Klöppel G, Rosai J: WHO Classification of Tumours of Endocrine Organs, 4th ed. Lyon, France: International Agency for Research on Cancer, 2017.

Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, LiVolsi VA, Papotti MG, Sobrinho-Simoes M, Tallini G, Mete O. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022 Mar; 33: 27-63. https://doi.org/10.1007/s12022-022-09707-3

Article  PubMed  Google Scholar 

Cannon J. The significance of hurthle cells in thyroid disease. Oncologist. 2011; 16: 1380-1387. https://doi.org/10.1634/theoncologist.2010-0253

Article  PubMed  PubMed Central  Google Scholar 

Sobrinho-Simoes M, Maximo V, Castro IV, Fonseca E, Soares P, Garcia-Rostan G, Oliveira MC. Hurthle (oncocytic) cell tumors of thyroid: etiopathogenesis, diagnosis and clinical significance. Int J Surg Pathol. 2005 Jan; 13: 29-35. https://doi.org/10.1177/106689690501300104

Article  PubMed  Google Scholar 

Bischoff LA, Ganly I, Fugazzola L, Buczek E, Faquin WC, Haugen BR, McIver B, McMullen CP, Newbold K, Rocke DJ, Russell MD, Ryder M, Sadow PM, Sherman E, Shindo M, Shonka DC, Jr., Singer MC, Stack BC, Jr., Wirth LJ, Wong RJ, Randolph GW. Molecular Alterations and Comprehensive Clinical Management of Oncocytic Thyroid Carcinoma: A Review and Multidisciplinary 2023 Update. JAMA Otolaryngol Head Neck Surg. 2024 Mar 1; 150: 265-272. https://doi.org/10.1001/jamaoto.2023.4323

Article  Google Scholar 

Gopal RK, Kubler K, Calvo SE, Polak P, Livitz D, Rosebrock D, Sadow PM, Campbell B, Donovan SE, Amin S, Gigliotti BJ, Grabarek Z, Hess JM, Stewart C, Braunstein LZ, Arndt PF, Mordecai S, Shih AR, Chaves F, Zhan T, Lubitz CC, Kim J, Iafrate AJ, Wirth L, Parangi S, Leshchiner I, Daniels GH, Mootha VK, Dias-Santagata D, Getz G, McFadden DG. Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hurthle Cell Carcinoma. Cancer Cell. 2018 Aug 13; 34: 242-255 e245. https://doi.org/10.1016/j.ccell.2018.06.013

Article  CAS  Google Scholar 

Asa SL, Mete O. Oncocytic Change in Thyroid Pathology. Front Endocrinol (Lausanne). 2021; 12: 678119. https://doi.org/10.3389/fendo.2021.678119

Article  PubMed  PubMed Central  Google Scholar 

Lukovic J, Petrovic I, Liu Z, Armstrong SM, Brierley JD, Tsang R, Pasternak JD, Gomez-Hernandez K, Liu A, Asa SL, Mete O. Oncocytic Papillary Thyroid Carcinoma and Oncocytic Poorly Differentiated Thyroid Carcinoma: Clinical Features, Uptake, and Response to Radioactive Iodine Therapy, and Outcome. Front Endocrinol (Lausanne). 2021; 12: 795184. https://doi.org/10.3389/fendo.2021.795184

Article  PubMed  PubMed Central  Google Scholar 

Lopez-Penabad L, Chiu AC, Hoff AO, Schultz P, Gaztambide S, Ordonez NG, Sherman SI. Prognostic factors in patients with Hurthle cell neoplasms of the thyroid. Cancer. 2003 Mar 1; 97: 1186-1194. https://doi.org/10.1002/cncr.11176

Article  Google Scholar 

Sugino K, Kameyama K, Ito K, Nagahama M, Kitagawa W, Shibuya H, Ohkuwa K, Uruno T, Akaishi J, Suzuki A, Masaki C, Ito K. Does Hurthle cell carcinoma of the thyroid have a poorer prognosis than ordinary follicular thyroid carcinoma? Ann Surg Oncol. 2013 Sep; 20: 2944-2950. https://doi.org/10.1245/s10434-013-2965-y

Article  PubMed  Google Scholar 

Wenter V, Albert NL, Unterrainer M, Ahmaddy F, Ilhan H, Jellinek A, Knosel T, Bartenstein P, Spitzweg C, Lehner S, Todica A. Clinical impact of follicular oncocytic (Hurthle cell) carcinoma in comparison with corresponding classical follicular thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2021 Feb; 48: 449-460. https://doi.org/10.1007/s00259-020-04952-2

Article  PubMed  CAS  Google Scholar 

Kuo EJ, Roman SA, Sosa JA. Patients with follicular and Hurthle cell microcarcinomas have compromised survival: a population level study of 22,738 patients. Surgery. 2013 Dec; 154: 1246-1253; discussion 1253-1244. https://doi.org/10.1016/j.surg.2013.04.033

Article  PubMed  Google Scholar 

Jin M, Kim ES, Kim BH, Kim HK, Kang YE, Jeon MJ, Kim TY, Kang HC, Kim WB, Shong YK, Kim M, Kim WG. Clinicopathological Characteristics and Disease-Free Survival in Patients with Hurthle Cell Carcinoma: A Multicenter Cohort Study in South Korea. Endocrinol Metab (Seoul). 2021 Oct; 36: 1078-1085. https://doi.org/10.3803/EnM.2021.1151

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Zheng X, Zhu J, Li Z, Wei T. Radioactive Iodine Therapy Does not Improve Cancer-specific Survival in Hurthle Cell Carcinoma of the Thyroid. J Clin Endocrinol Metab. 2022 Nov 23; 107: 3144-3151. https://doi.org/10.1210/clinem/dgac448

Article  Google Scholar 

Yang Q, Zhao Z, Zhong G, Jin A, Yu K. Effect of adjuvant radioactive iodine therapy on survival in rare oxyphilic subtype of thyroid cancer (Hurthle cell carcinoma). PeerJ. 2019; 7: e7458. https://doi.org/10.7717/peerj.7458

Article  PubMed  PubMed Central  Google Scholar 

Grani G, Lamartina L, Durante C, Filetti S, Cooper DS. Follicular thyroid cancer and Hurthle cell carcinoma: challenges in diagnosis, treatment, and clinical management. Lancet Diabetes Endocrinol. 2018 Jun; 6: 500-514. https://doi.org/10.1016/S2213-8587(17)30325-X

Article  PubMed  Google Scholar 

Wakely PE, Jr. Oncocytic and oncocyte-like lesions of the head and neck. Ann Diagn Pathol. 2008 Jun; 12: 222-230. https://doi.org/10.1016/j.anndiagpath.2008.04.007

Article  PubMed  Google Scholar 

Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V, Baracca A, Tallini G, Martinuzzi A, Lenaz G, Rugolo M, Romeo G. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res. 2006 Jun 15; 66: 6087-6096. https://doi.org/10.1158/0008-5472.CAN-06-0171

Article  Google Scholar 

Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M, Iommarini L, Ghelli A, Moretti M, Betts CM, Martinelli GN, Ceroni AR, Curcio F, Carelli V, Rugolo M, Tallini G, Romeo G. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci U S A. 2007 May 22; 104: 9001-9006. https://doi.org/10.1073/pnas.0703056104

Article  CAS  Google Scholar 

Corver WE, Ruano D, Weijers K, den Hartog WC, van Nieuwenhuizen MP, de Miranda N, van Eijk R, Middeldorp A, Jordanova ES, Oosting J, Kapiteijn E, Hovens G, Smit J, van Wezel T, Morreau H. Genome haploidisation with chromosome 7 retention in oncocytic follicular thyroid carcinoma. PLoS One. 2012; 7: e38287. https://doi.org/10.1371/journal.pone.0038287

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ganly I, Liu EM, Kuo F, Makarov V, Dong Y, Park J, Gong Y, Gorelick AN, Knauf JA, Benedetti E, Tait-Mulder J, Morris LGT, Fagin JA, Intlekofer AM, Krumsiek J, Gammage PA, Ghossein R, Xu B, Chan TA, Reznik E. Mitonuclear genotype remodels the metabolic and microenvironmental landscape of Hurthle cell carcinoma. Sci Adv. 2022 Jun 24; 8: eabn9699. https://doi.org/10.1126/sciadv.abn9699

Article  PubMed  PubMed Central  CAS  Google Scholar 

Frank AR, Li V, Shelton SD, Kim J, Stott GM, Neckers LM, Xie Y, Williams NS, Mishra P, McFadden DG. Mitochondrial-Encoded Complex I Impairment Induces a Targetable Dependency on Aerobic Fermentation in Hurthle Cell Carcinoma of the Thyroid. Cancer Discov. 2023 Aug 4; 13: 1884-1903. https://doi.org/10.1158/2159-8290.CD-22-0982

Article  Google Scholar 

Gopal RK, Vantaku VR, Panda A, Reimer B, Rath S, To TL, Fisch AS, Cetinbas M, Livneh M, Calcaterra MJ, Gigliotti BJ, Pierce KA, Clish CB, Dias-Santagata D, Sadow PM, Wirth LJ, Daniels GH, Sadreyev RI, Calvo SE, Parangi S, Mootha VK. Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hurthle Cell Carcinoma. Cancer Discov. 2023 Aug 4; 13: 1904-1921. https://doi.org/10.1158/2159-8290.CD-22-0976

Article  Google Scholar 

Sun Y, Selvarajan S, Zang Z, Liu W, Zhu Y, Zhang H, Chen W, Chen H, Li L, Cai X, Gao H, Wu Z, Zhao Y, Chen L, Teng X, Mantoo S, Lim TK, Hariraman B, Yeow S, Alkaff SMF, Lee SS, Ruan G, Zhang Q, Zhu T, Hu Y, Dong Z, Ge W, Xiao Q, Wang W, Wang G, Xiao J, He Y, Wang Z, Sun W, Qin Y, Zhu J, Zheng X, Wang L, Zheng X, Xu K, Shao Y, Zheng S, Liu K, Aebersold R, Guan H, Wu X, Luo D, Tian W, Li SZ, Kon OL, Iyer NG, Guo T. Artificial intelligence defines protein-based classification of thyroid nodules. Cell Discov. 2022 Sep 6; 8: 85. https://doi.org/10.1038/s41421-022-00442-x

Article  CAS  Google Scholar 

Guo T, Kouvonen P, Koh CC, Gillet LC, Wolski WE, Rost HL, Rosenberger G, Collins BC, Blum LC, Gillessen S, Joerger M, Jochum W, Aebersold R. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat Med. 2015 Apr; 21: 407-413. https://doi.org/10.1038/nm.3807

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012 Jun; 11: O111 016717. https://doi.org/10.1074/mcp.O111.016717

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang F, Ge W, Ruan G, Cai X, Guo T. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. Proteomics. 2020 Sep; 20: e1900276. https://doi.org/10.1002/pmic.201900276

留言 (0)

沒有登入
gif