Effects of Various Poly(A) Tails on Luciferase Expression

Self, W.H., Tenforde, M.W., Rhoads, J.P., Gaglani, M., Ginde, A.A., et al., Comparative effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions, United States, March−A-ugust 2021, Morb. Mortal. Wkly. Rep., 2021, vol. 70, pp. 1337–1343.

Article  CAS  Google Scholar 

Pateev, I., Seregina, K., Ivanov, R., and Reshetnikov, V., Biodistribution of RNA vaccines and of their products: Evidence from human and animal studies, Biomedicines, 2024, vol. 12, no. 1, p. 59.

Article  CAS  Google Scholar 

Muslimov, A., Tereshchenko, V., Shevyrev, D., Rogova, A., Lepik, K., et al., The dual role of the innate immune system in the effectiveness of mRNA therapeutics, Int. J. Mol. Sci., 2023, vol. 24, no. 19, p. 14820.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yen, A., Cheng, Y., Sylvestre, M., Gustafson, H.H., Puri, S., et al., Serum nuclease susceptibility of mRNA cargo in condensed polyplexes, Mol. Pharm., 2018, vol. 15, pp. 2268–2276.

Article  CAS  PubMed  Google Scholar 

Dirisala, A., Uchida, S., Tockary, T.A., Yoshinaga, N., Li, J., et al., Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimising extracellular and intracellular nuclease tolerability, J. Drug Targeting, 2019, vol. 27, pp. 670–680.

Article  CAS  Google Scholar 

Trepotec, Z., Geiger, J., Plank, C., Aneja, M.K., and Rudolph, C., Segmented poly(A) tails significantly reduce recombination of plasmid DNA without affecting mRNA translation efficiency or half-life, RNA, 2019, vol. 25, pp. 507–518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katz, N., Cohen, R., Solomon, O., Kaufmann, B., Atar, O., et al., Synthetic 5' UTRs can either up- or downregulate expression upon RNA-binding protein binding, Cell Syst., 2019, vol. 9, pp. 93–106 e108.

Orlandini von Niessen, A.G., Poleganov, M.A., Rechner, C., Plaschke, A., Kranz, L.M., et al., Improving mRNA-based therapeutic gene delivery by expression-augmenting 3' UTRs identified by cellular library screening, Mol. Ther., 2019, vol. 27, pp. 824–836.

Article  CAS  PubMed  Google Scholar 

Kirshina, A., Vasileva, O., Kunyk, D., Seregina, K., Muslimov, A., et al., Effects of combinations of untranslated-region sequences on translation of mRNA, Biomolecules, 2023, vol. 13, no. 11, p. 1677.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reshetnikov, V., Terenin, I., Shepelkova, G., Yeremeev, V., Kolmykov, S., et al., Untranslated region sequences and the efficacy of mRNA vaccines against tuberculosis, Int. J. Mol. Sci., 2024, vol. 25, p. 888.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szostak, E. and Gebauer, F., Translational control by 3'-UTR-binding proteins, Briefings Funct. Genomics, 2013, vol. 12, pp. 58−65.

Article  CAS  Google Scholar 

Fabian, M.R., Sonenberg, N., and Filipowicz, W., Regulation of mRNA translation and stability by microRNAs, Annu. Rev. Biochem., 2010, vol. 79, pp. 351−379.

Araujo, P.R., Yoon, K., Ko, D., Smith, A.D., Qiao, M., et al., Before it gets started: Regulating translation at the 5' UTR, Comp. Funct. Genomics, 2012, vol. 2012, p. 475731.

Article  PubMed  PubMed Central  Google Scholar 

Eckmann, C.R., Rammelt, C., and Wahle, E., Control of poly(A) tail length, Wiley Interdiscip. Rev.: RNA, 2011, vol. 2, pp. 348–361.

Article  CAS  PubMed  Google Scholar 

Wahle, E., Poly(A) tail length control is caused by termination of processive synthesis, J. Biol. Chem., 1995, vol. 270, pp. 2800–2808.

Article  CAS  PubMed  Google Scholar 

Richter, J.D., Cytoplasmic polyadenylation in development and beyond, Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 446–456.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salles, F.J., Lieberfarb, M.E., Wreden, C., Gergen, J.P., and Strickland, S., Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs, Science, 1994, vol. 266, pp. 1996–1999.

Article  CAS  PubMed  Google Scholar 

Sheets, M.D., Wu, M., and Wickens, M., Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation, Nature, 1995, vol. 374, pp. 511–516.

Article  CAS  PubMed  Google Scholar 

Eichhorn, S.W., Subtelny, A.O., Kronja, I., Kwasnieski, J.C., Orr-Weaver, T.L., et al., mRNA poly(A)-tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos, eLife, 2016, vol. 5, p. e16955.

Article  PubMed  PubMed Central  Google Scholar 

Park, J.E., Yi, H., Kim, Y., Chang, H., and Kim, V.N., Regulation of poly(A) tail and translation during the somatic cell cycle, Mol. Cell, 2016, vol. 62, pp. 462–471.

Article  CAS  PubMed  Google Scholar 

Subtelny, A.O., Eichhorn, S.W., Chen, G.R., Sive, H., and Bartel, D.P., Poly(A)-tail profiling reveals an embryonic switch in translational control, Nature, 2014, vol. 508, pp. 66–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alzahrani, M.R., Guan, B.J., Zagore, L.L., Wu, J., Chen, C.W., et al., Newly synthesized mRNA escapes translational repression during the acute phase of the mammalian unfolded protein response, PLoS One, 2022, vol. 17, p. e0271695.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lima, S.A., Chipman, L.B., Nicholson, A.L., Chen, Y.H., Yee, B.A., et al., Short poly(A) tails are a conserved feature of highly expressed genes, Nat. Struct. Mol. Biol., 2017, vol. 24, pp. 1057–1063.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schafer, I.B., Yamashita, M., Schuller, J.M., Schussler, S., Reichelt, P., et al., Molecular basis for poly(A) RNP architecture and recognition by the Pan2-Pan3 deadenylase, Cell, 2019, vol. 177, pp. 1619–1631 e1621.

Webster, M.W., Chen, Y.H., Stowell, J.A.W., AlhUnited Statesini, N., Sweet, T., et al., mRNA deadenylation is coupled to translation rates by the differential activities of Ccr4-Not nucleases, Mol. Cell, 2018, vol. 70, pp. 1089–1100.

Xiang, K. and Bartel, D.P., The molecular basis of coupling between poly(A)-tail length and translational efficiency, eLife, 2021, vol. 10, p. e66493.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng, J. and Schoenberg, D.R., mRNA with a <20-nt poly(A) tail imparted by the poly(A)-limiting element is translated as efficiently in vivo as long poly(A) mRNA, RNA, 2005, vol. 11, pp. 1131–1140.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim, J., Ha, M., Chang, H., Kwon, S.C., Simanshu, D.K., et al., Uridylation by TUT4 and TUT7 marks mRNA for degradation, Cell, 2014, vol. 159, pp. 1365–1376.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, C.Y., Liang, Z., Hu, Y., Zhang, H., Setiasabda, K.D., et al., Cytidine-containing tails robustly enhance and prolong protein production of synthetic mRNA in cell and in vivo, Mol. Ther.–Nucleic Acids, 2022, vol. 30, pp. 300–310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Granados-Riveron, J.T. and Aquino-Jarquin, G., Engineering of the current nucleoside-modified mRNA-LNP vaccines against SARS-CoV-2, Biomed. Pharmacother., 2021, vol. 142, p. 111953.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verbeke, R., Lentacker, I., De Smedt, S.C., and Dewitte, H., The dawn of mRNA vaccines: The COVID-19 case, J. Controled Release, 2021, vol. 333, pp. 511–520.

Article  CAS  Google Scholar 

Hald Albertsen, C., Kulkarni, J.A., Witzigmann, D., Lind, M., Petersson, K., et al., The role of lipid components in lipid nanoparticles for vaccines and gene therapy, Adv. Drug Delivery Rev., 2022, vol. 188, p. 114416.

Article  CAS  Google Scholar 

Yan, Y., Liu, X.Y., Lu, A., Wang, X.Y., Jiang, L.X., et al., Non-viral vectors for RNA delivery, J. Controled Release, 2022, vol. 342, pp. 241–279.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif