Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).
Article CAS PubMed Google Scholar
Janke, C. & Magiera, M. M. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 21, 307–326 (2020).
Article CAS PubMed Google Scholar
Shida, T., Cueva, J. G., Xu, Z., Goodman, M. B. & Nachury, M. V. The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc. Natl Acad. Sci. USA 107, 21517–21522 (2010).
Article CAS PubMed PubMed Central Google Scholar
Kormendi, V., Szyk, A., Piszczek, G. & Roll-Mecak, A. Crystal structures of tubulin acetyltransferase reveal a conserved catalytic core and the plasticity of the essential N terminus. J. Biol. Chem. 287, 41569–41575 (2012).
Article CAS PubMed PubMed Central Google Scholar
LeDizet, M. & Piperno, G. Identification of an acetylation site of Chlamydomonas alpha-tubulin. Proc. Natl Acad. Sci. USA 84, 5720–5724 (1987).
Article CAS PubMed PubMed Central Google Scholar
Akera, T. Tubulin post-translational modifications in meiosis. Semin. Cell Dev. Biol. 137, 38–45 (2023).
Article CAS PubMed Google Scholar
Sadoul, K. et al. HDAC6 controls the kinetics of platelet activation. Blood 120, 4215–4218 (2012).
Article CAS PubMed Google Scholar
Cambray-Deakin, M. A. & Burgoyne, R. D. Posttranslational modifications of alpha-tubulin: acetylated and detyrosinated forms in axons of rat cerebellum. J. Cell Biol. 104, 1569–1574 (1987).
Article CAS PubMed Google Scholar
Yan, C. et al. Microtubule acetylation is required for mechanosensation in Drosophila. Cell. Rep. 25, 1051–1065.e6 (2018).
Article CAS PubMed PubMed Central Google Scholar
Morley, S. J. et al. Acetylated tubulin is essential for touch sensation in mice. Elife 5, e20813 (2016).
Article PubMed PubMed Central Google Scholar
Akella, J. S. et al. MEC-17 is an alpha-tubulin acetyltransferase. Nature 467, 218–222 (2010).
Article CAS PubMed PubMed Central Google Scholar
Li, L. et al. MEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons. J. Neurosci. 32, 12673–12683 (2012).
Article CAS PubMed PubMed Central Google Scholar
Kim, G. W., Li, L., Ghorbani, M., You, L. & Yang, X. J. Mice lacking α-tubulin acetyltransferase 1 are viable but display α-tubulin acetylation deficiency and dentate gyrus distortion. J. Biol. Chem. 288, 20334–20350 (2013).
Article CAS PubMed PubMed Central Google Scholar
Boggs, A. E. et al. α-Tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res. 75, 203–215 (2015).
Article CAS PubMed Google Scholar
Lee, C. C., Cheng, Y. C., Chang, C. Y., Lin, C. M. & Chang, J. Y. Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption. Sci. Rep. 8, 17477 (2018).
Article PubMed PubMed Central Google Scholar
Lopes, D., Seabra, A. L., Orr, B. & Maiato, H. α-Tubulin detyrosination links the suppression of MCAK activity with taxol cytotoxicity. J. Cell Biol. 222, e202205092 (2023).
Article CAS PubMed Google Scholar
Wattanathamsan, O. et al. Tubulin acetylation enhances lung cancer resistance to paclitaxel-induced cell death through Mcl-1 stabilization. Cell Death Discov. 7, 67 (2021).
Article CAS PubMed PubMed Central Google Scholar
Iancu-Rubin, C. et al. Panobinostat (LBH589)-induced acetylation of tubulin impairs megakaryocyte maturation and platelet formation. Exp. Hematol. 40, 564–574 (2012).
Article CAS PubMed PubMed Central Google Scholar
Ribba, A. S. et al. Marginal band microtubules are acetylated by αTAT1. Platelets 32, 568–572 (2021).
Article CAS PubMed Google Scholar
Even, A. et al. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci. Adv. 5, eaax2705 (2019).
Article CAS PubMed PubMed Central Google Scholar
Shah, N. et al. TAK1 activation of alpha-TAT1 and microtubule hyperacetylation control AKT signaling and cell growth. Nat. Commun. 9, 1696 (2018).
Article PubMed PubMed Central Google Scholar
Taschner, M., Vetter, M. & Lorentzen, E. Atomic resolution structure of human alpha-tubulin acetyltransferase bound to acetyl-CoA. Proc. Natl Acad. Sci. USA 109, 19649–19654 (2012).
Article CAS PubMed PubMed Central Google Scholar
Friedmann, D. R., Aguilar, A., Fan, J., Nachury, M. V. & Marmorstein, R. Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation. Proc. Natl Acad. Sci. USA 109, 19655–19660 (2012).
Article CAS PubMed PubMed Central Google Scholar
Howes, S. C., Alushin, G. M., Shida, T., Nachury, M. V. & Nogales, E. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol. Biol. Cell 25, 257–266 (2014).
Article PubMed PubMed Central Google Scholar
Szyk, A. et al. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 157, 1405–1415 (2014).
Article CAS PubMed PubMed Central Google Scholar
Coombes, C. et al. Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1. Proc. Natl Acad. Sci. USA 113, E7176–e7184 (2016).
Article CAS PubMed PubMed Central Google Scholar
Wapenaar, H. & Dekker, F. J. Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin. Epigenetics 8, 59 (2016).
Article PubMed PubMed Central Google Scholar
Fukushige, T. et al. MEC-12, an alpha-tubulin required for touch sensitivity in C. elegans. J. Cell Sci. 112, 395–403 (1999).
Article CAS PubMed Google Scholar
Savage, C. et al. mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev. 3, 870–881 (1989).
Article CAS PubMed Google Scholar
Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).
留言 (0)