Robertson, G. P. et al. Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356, eaal2324 (2017).
Lynd, L. R. The grand challenge of cellulosic biofuels. Nat. Biotechnol. 35, 912–915 (2017).
Article CAS PubMed Google Scholar
Wang, L., Bilal, M., Tan, C., Jiang, X. & Li, F. Industrialization progress of lignocellulosic ethanol. Syst. Microbiol. Biomanufacturing 2, 246–258 (2021).
Service, R. F. Renewable energy. Cellulosic ethanol at last? Science 345, 1111 (2014).
Article CAS PubMed Google Scholar
Huang, H. et al. Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. Bioresour. Technol. 102, 7486–7493 (2011).
Article CAS PubMed Google Scholar
Lam, F. H. et al. Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks. Sci. Adv. 7, eabf7613 (2021).
Article CAS PubMed PubMed Central Google Scholar
Humbird, D. et al. Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover (National Renewable Energy Laboratory, 2011).
Cunha, J. T., Romani, A., Costa, C. E., Sa-Correia, I. & Domingues, L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl. Microbiol. Biotechnol. 103, 159–175 (2019).
Article CAS PubMed Google Scholar
Vanmarcke, G., Demeke, M. M., Foulquie-Moreno, M. R. & Thevelein, J. M. Identification of the major fermentation inhibitors of recombinant 2G yeasts in diverse lignocellulose hydrolysates. Biotechnol. Biofuels 14, 92 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kim, S. R., Park, Y. C., Jin, Y. S. & Seo, J. H. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 31, 851–861 (2013).
Article CAS PubMed Google Scholar
Diao, L. et al. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol. 13, 110 (2013).
Article PubMed PubMed Central Google Scholar
Runquist, D., Hahn-Hagerdal, B. & Radstrom, P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 3, 5 (2010).
Article PubMed PubMed Central Google Scholar
Hou, J. et al. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae. J. Biosci. Bioeng. 121, 160–165 (2016).
Article CAS PubMed Google Scholar
Kuyper, M. et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5, 925–934 (2005).
Article CAS PubMed Google Scholar
Sato, T. K. et al. Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae. PLoS Genet. 12, e1006372 (2016).
Article PubMed PubMed Central Google Scholar
Zhou, H., Cheng, J. S., Wang, B. L., Fink, G. R. & Stephanopoulos, G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 14, 611–622 (2012).
Article CAS PubMed Google Scholar
Frazzon, J. & Dean, D. R. Formation of iron-sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Curr. Opin. Chem. Biol. 7, 166–173 (2003).
Article CAS PubMed Google Scholar
Garland, S. A., Hoff, K., Vickery, L. E. & Culotta, V. C. Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J. Mol. Biol. 294, 897–907 (1999).
Article CAS PubMed Google Scholar
Rouault, T. A. & Tong, W. H. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat. Rev. Mol. Cell Biol. 6, 345–351 (2005).
Article CAS PubMed Google Scholar
Dos Santos, L. V. et al. Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains. Sci. Rep. 6, 38676 (2016).
Article PubMed PubMed Central Google Scholar
Palermo, G. C. L., Coutoune, N., Bueno, J. G. R., Maciel, L. F. & Dos Santos, L. V. Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae. Microb. Biotechnol. 14, 2101–2115 (2021).
Article CAS PubMed PubMed Central Google Scholar
Li, L., Chen, O. S., McVey Ward, D. & Kaplan, J. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J. Biol. Chem. 276, 29515–29519 (2001).
Article CAS PubMed Google Scholar
Haro, R. & Rodriguez-Navarro, A. Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1564, 114–122 (2002).
Article CAS PubMed Google Scholar
Haro, R. & Rodrı́guez-Navarro, A. Functional analysis of the M2D helix of the TRK1 potassium transporter of Saccharomyces cerevisiae. Biochim. Biophys. Acta Biomembranes 1613, 1–6 (2003).
Xu, X., Williams, T. C., Divne, C., Pretorius, I. S. & Paulsen, I. T. Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnol. Biofuels 12, 97 (2019).
Article PubMed PubMed Central Google Scholar
Hohmann, S. Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett. 583, 4025–4029 (2009).
Article CAS PubMed Google Scholar
Posas, F. & Saito, H. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 17, 1385–1394 (1998).
Article CAS PubMed PubMed Central Google Scholar
Horie, T., Tatebayashi, K., Yamada, R. & Saito, H. Phosphorylated Ssk1 prevents unphosphorylated Ssk1 from activating the Ssk2 mitogen-activated protein kinase kinase kinase in the yeast high-osmolarity glycerol osmoregulatory pathway. Mol. Cell. Biol. 28, 5172–5183 (2008).
Article CAS PubMed PubMed Central Google Scholar
Hsiao, W. Y., Wang, Y. T. & Wang, S. W. Fission yeast Puf2, a pumilio and FBF family RNA-binding protein, links stress granules to processing bodies. Mol. Cell. Biol. 40, e00589-19 (2020).
Article PubMed PubMed Central Google Scholar
Porter, D. F., Koh, Y. Y., VanVeller, B., Raines, R. T. & Wickens, M. Target selection by natural and redesigned PUF proteins. Proc. Natl Acad. Sci. USA 112, 15868–15873 (2015).
Article CAS PubMed PubMed Central Google Scholar
Gerber, A. P., Herschlag, D. & Brown, P. O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2, E79 (2004).
Article PubMed PubMed Central Google Scholar
Montllor-Albalate, C. et al. Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae. Redox Biol. 21, 101064 (2019).
留言 (0)