Allicin Ameliorated High-glucose Peritoneal Dialysis Solution-induced Peritoneal Fibrosis in Rats via the JAK2/STAT3 Signaling Pathway

Chaudhary, K., Moore, H., Tandon, A., Gupta, S., Khanna, R., & Mohan, R. R. (2014). Nanotechnology and adeno-associated virus-based decorin gene therapy ameliorates peritoneal fibrosis. American Journal of Physiology: Renal Physiology, 307, F777–782.

CAS  PubMed  PubMed Central  Google Scholar 

Yu, M., Shi, J., & Sheng, M., et al. (2018). Astragalus inhibits epithelial-to-mesenchymal transition of peritoneal mesothelial cells by down-regulating β-catenin. Cellular Physiology and Biochemistry, 51, 2794–2813.

Article  CAS  PubMed  Google Scholar 

Mizutani, M., Ito, Y., & Mizuno, M., et al. (2010). Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. American Journal of Physiology: Renal Physiology, 298, F721–733.

CAS  PubMed  Google Scholar 

Morishita, Y., Yoshizawa, H., & Watanabe, M., et al. (2016). MicroRNA expression profiling in peritoneal fibrosis. Translational Research: The Journal of Laboratory and Clinical Medicine, 169, 47–66.

Article  CAS  PubMed  Google Scholar 

Yung, S., & Chan, T. M. (2003). Preventing peritoneal fibrosis–insights from the laboratory. Peritoneal Dialysis International, 23(Suppl 2), S37–41.

Article  CAS  PubMed  Google Scholar 

Zhou, Q., Yang, M., Lan, H., & Yu, X. (2013). miR-30a negatively regulates TGF-β1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. American Journal of Pathology, 183, 808–819.

Article  CAS  PubMed  Google Scholar 

Sakai, N., Nakamura, M., & Lipson, K. E., et al. (2017). Inhibition of CTGF ameliorates peritoneal fibrosis through suppression of fibroblast and myofibroblast accumulation and angiogenesis. Scientific Reports, 7, 5392.

Article  PubMed  PubMed Central  Google Scholar 

Li, L., Shen, N., & Wang, N., et al. (2018). Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney International, 93, 1384–1396.

Article  CAS  PubMed  Google Scholar 

Aroeira, L. S., Aguilera, A., & Sánchez-Tomero, J. A., et al. (2007). Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. Journal of the American Society of Nephrology, 18, 2004–2013.

Article  CAS  PubMed  Google Scholar 

Lim, C. P., Phan, T. T., Lim, I. J., & Cao, X. (2009). Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts. Journal of Investigative Dermatology, 129, 851–861.

Article  CAS  PubMed  Google Scholar 

Strippoli, R., Moreno-Vicente, R., & Battistelli, C., et al. (2016). Molecular mechanisms underlying peritoneal EMT and fibrosis. Stem Cells International, 2016, 3543678.

Article  PubMed  PubMed Central  Google Scholar 

Del Peso G., Jiménez-Heffernan J. A., Bajo M. A., et al. Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport. Kidney International. Supplement 2008: S26-33.

Gonzalez, D. M., & Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling, 7, re8.

Article  PubMed  PubMed Central  Google Scholar 

Zhao, J. L., Guo, M. Z., Zhu, J. J., Zhang, T., & Min, D. Y. (2019). Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1). Cellular & Molecular Biology Letters, 24, 32.

Article  Google Scholar 

Cutler, R. R., & Wilson, P. (2004). Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. British Journal of Biomedical Science, 61, 71–74.

Article  CAS  PubMed  Google Scholar 

Davis, S. R. (2005). An overview of the antifungal properties of allicin and its breakdown products–the possibility of a safe and effective antifungal prophylactic. Mycoses, 48, 95–100.

Article  CAS  PubMed  Google Scholar 

Lang, A., Lahav, M., & Sakhnini, E., et al. (2004). Allicin inhibits spontaneous and TNF-alpha induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cells. Clinical Nutrition, 23, 1199–1208.

Article  CAS  PubMed  Google Scholar 

D’Argenio, G., Mazzone, G., & Ribecco, M. T., et al. (2013). Garlic extract attenuating rat liver fibrosis by inhibiting TGF-β1. Clinical Nutrition, 32, 252–258.

Article  PubMed  Google Scholar 

Huang, H., Zheng, F., Dong, X., Wu, F., Wu, T., & Li, H. (2017). Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro. Experimental and Therapeutic Medicine, 13, 254–262.

Article  CAS  PubMed  Google Scholar 

Sun, H. H., Wang, J. C., Feng, X. M., Zhu, S. L., & Cai, J. (2020). Allicin Inhibits Proliferation and Promotes Apoptosis of Human Epidural Scar Fibroblasts. World Neurosurgery, 136, e460–e468.

Article  PubMed  Google Scholar 

Liu, C., Cao, F., & Tang, Q. Z., et al. (2010). Allicin protects against cardiac hypertrophy and fibrosis via attenuating reactive oxygen species-dependent signaling pathways. The Journal of Nutritional Biochemistry, 21, 1238–1250.

Article  CAS  PubMed  Google Scholar 

Park, S. H., Lee, E. G., Kim, I. S., Kim, Y. J., Cho, D. K., & Kim, Y. L. (2004). Effect of glucose degradation products on the peritoneal membrane in a chronic inflammatory infusion model of peritoneal dialysis in the rat. Peritoneal Dialysis International, 24, 115–122.

Article  CAS  PubMed  Google Scholar 

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method Methods, 25, 402–408.

Article  CAS  PubMed  Google Scholar 

Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. Journal of Cell Biology, 172, 973–981.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Baal, J. O., Van de Vijver, K. K., & Nieuwland, R., et al. (2017). The histophysiology and pathophysiology of the peritoneum. Tissue and Cell, 49, 95–105.

Article  PubMed  Google Scholar 

Ishimatsu, N., Miyamoto, T., & Ueno, H., et al. (2016). High glucose concentration-induced expression of pentraxin-3 in a rat model of continuous peritoneal dialysis. Histology and Histopathology, 31, 1251–1258.

CAS  PubMed  Google Scholar 

Wang, H. C., Lin, X. H., Fang, X. P., Mu, X. Y., Li, T. J. & Liu, J. L. (2016). [Emodin ameliorates the peritoneal dialysis-related peritoneal fibrosis via inhibiting the activation of Notch pathway]. Sheng Li Xue Bao, 68, 747–756.

de Lima, S. M., Otoni, A., & Sabino Ade, P., et al. (2013). Inflammation, neoangiogenesis and fibrosis in peritoneal dialysis. Clinica Chimica Acta, 421, 46–50.

Article  Google Scholar 

Oh, K. H., Jung, J. Y., & Yoon, M. O., et al. (2010). Intra-peritoneal interleukin-6 system is a potent determinant of the baseline peritoneal solute transport in incident peritoneal dialysis patients. Nephrology, Dialysis, Transplantation, 25, 1639–1646.

Article  CAS  PubMed  Google Scholar 

Zare, E., Alirezaei, A., Bakhtiyari, M., & Mansouri, A. (2019). Evaluating the effect of garlic extract on serum inflammatory markers of peritoneal dialysis patients: a randomized double-blind clinical trial study. BMC Nephrol, 20, 26.

Article  PubMed  PubMed Central  Google Scholar 

Liu, Y. (2004). Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. Journal of the American Society of Nephrology, 15, 1–12.

Article  CAS  PubMed  Google Scholar 

Liu, Y., & Yang, J. (2006). Hepatocyte growth factor: new arsenal in the fights against renal fibrosis? Kidney International, 70, 238–240.

Article  CAS  PubMed  Google Scholar 

Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation, 119, 1420–1428.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif