Chaudhary, K., Moore, H., Tandon, A., Gupta, S., Khanna, R., & Mohan, R. R. (2014). Nanotechnology and adeno-associated virus-based decorin gene therapy ameliorates peritoneal fibrosis. American Journal of Physiology: Renal Physiology, 307, F777–782.
CAS PubMed PubMed Central Google Scholar
Yu, M., Shi, J., & Sheng, M., et al. (2018). Astragalus inhibits epithelial-to-mesenchymal transition of peritoneal mesothelial cells by down-regulating β-catenin. Cellular Physiology and Biochemistry, 51, 2794–2813.
Article CAS PubMed Google Scholar
Mizutani, M., Ito, Y., & Mizuno, M., et al. (2010). Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. American Journal of Physiology: Renal Physiology, 298, F721–733.
Morishita, Y., Yoshizawa, H., & Watanabe, M., et al. (2016). MicroRNA expression profiling in peritoneal fibrosis. Translational Research: The Journal of Laboratory and Clinical Medicine, 169, 47–66.
Article CAS PubMed Google Scholar
Yung, S., & Chan, T. M. (2003). Preventing peritoneal fibrosis–insights from the laboratory. Peritoneal Dialysis International, 23(Suppl 2), S37–41.
Article CAS PubMed Google Scholar
Zhou, Q., Yang, M., Lan, H., & Yu, X. (2013). miR-30a negatively regulates TGF-β1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. American Journal of Pathology, 183, 808–819.
Article CAS PubMed Google Scholar
Sakai, N., Nakamura, M., & Lipson, K. E., et al. (2017). Inhibition of CTGF ameliorates peritoneal fibrosis through suppression of fibroblast and myofibroblast accumulation and angiogenesis. Scientific Reports, 7, 5392.
Article PubMed PubMed Central Google Scholar
Li, L., Shen, N., & Wang, N., et al. (2018). Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney International, 93, 1384–1396.
Article CAS PubMed Google Scholar
Aroeira, L. S., Aguilera, A., & Sánchez-Tomero, J. A., et al. (2007). Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. Journal of the American Society of Nephrology, 18, 2004–2013.
Article CAS PubMed Google Scholar
Lim, C. P., Phan, T. T., Lim, I. J., & Cao, X. (2009). Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts. Journal of Investigative Dermatology, 129, 851–861.
Article CAS PubMed Google Scholar
Strippoli, R., Moreno-Vicente, R., & Battistelli, C., et al. (2016). Molecular mechanisms underlying peritoneal EMT and fibrosis. Stem Cells International, 2016, 3543678.
Article PubMed PubMed Central Google Scholar
Del Peso G., Jiménez-Heffernan J. A., Bajo M. A., et al. Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport. Kidney International. Supplement 2008: S26-33.
Gonzalez, D. M., & Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling, 7, re8.
Article PubMed PubMed Central Google Scholar
Zhao, J. L., Guo, M. Z., Zhu, J. J., Zhang, T., & Min, D. Y. (2019). Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1). Cellular & Molecular Biology Letters, 24, 32.
Cutler, R. R., & Wilson, P. (2004). Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. British Journal of Biomedical Science, 61, 71–74.
Article CAS PubMed Google Scholar
Davis, S. R. (2005). An overview of the antifungal properties of allicin and its breakdown products–the possibility of a safe and effective antifungal prophylactic. Mycoses, 48, 95–100.
Article CAS PubMed Google Scholar
Lang, A., Lahav, M., & Sakhnini, E., et al. (2004). Allicin inhibits spontaneous and TNF-alpha induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cells. Clinical Nutrition, 23, 1199–1208.
Article CAS PubMed Google Scholar
D’Argenio, G., Mazzone, G., & Ribecco, M. T., et al. (2013). Garlic extract attenuating rat liver fibrosis by inhibiting TGF-β1. Clinical Nutrition, 32, 252–258.
Huang, H., Zheng, F., Dong, X., Wu, F., Wu, T., & Li, H. (2017). Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro. Experimental and Therapeutic Medicine, 13, 254–262.
Article CAS PubMed Google Scholar
Sun, H. H., Wang, J. C., Feng, X. M., Zhu, S. L., & Cai, J. (2020). Allicin Inhibits Proliferation and Promotes Apoptosis of Human Epidural Scar Fibroblasts. World Neurosurgery, 136, e460–e468.
Liu, C., Cao, F., & Tang, Q. Z., et al. (2010). Allicin protects against cardiac hypertrophy and fibrosis via attenuating reactive oxygen species-dependent signaling pathways. The Journal of Nutritional Biochemistry, 21, 1238–1250.
Article CAS PubMed Google Scholar
Park, S. H., Lee, E. G., Kim, I. S., Kim, Y. J., Cho, D. K., & Kim, Y. L. (2004). Effect of glucose degradation products on the peritoneal membrane in a chronic inflammatory infusion model of peritoneal dialysis in the rat. Peritoneal Dialysis International, 24, 115–122.
Article CAS PubMed Google Scholar
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method Methods, 25, 402–408.
Article CAS PubMed Google Scholar
Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. Journal of Cell Biology, 172, 973–981.
Article CAS PubMed PubMed Central Google Scholar
van Baal, J. O., Van de Vijver, K. K., & Nieuwland, R., et al. (2017). The histophysiology and pathophysiology of the peritoneum. Tissue and Cell, 49, 95–105.
Ishimatsu, N., Miyamoto, T., & Ueno, H., et al. (2016). High glucose concentration-induced expression of pentraxin-3 in a rat model of continuous peritoneal dialysis. Histology and Histopathology, 31, 1251–1258.
Wang, H. C., Lin, X. H., Fang, X. P., Mu, X. Y., Li, T. J. & Liu, J. L. (2016). [Emodin ameliorates the peritoneal dialysis-related peritoneal fibrosis via inhibiting the activation of Notch pathway]. Sheng Li Xue Bao, 68, 747–756.
de Lima, S. M., Otoni, A., & Sabino Ade, P., et al. (2013). Inflammation, neoangiogenesis and fibrosis in peritoneal dialysis. Clinica Chimica Acta, 421, 46–50.
Oh, K. H., Jung, J. Y., & Yoon, M. O., et al. (2010). Intra-peritoneal interleukin-6 system is a potent determinant of the baseline peritoneal solute transport in incident peritoneal dialysis patients. Nephrology, Dialysis, Transplantation, 25, 1639–1646.
Article CAS PubMed Google Scholar
Zare, E., Alirezaei, A., Bakhtiyari, M., & Mansouri, A. (2019). Evaluating the effect of garlic extract on serum inflammatory markers of peritoneal dialysis patients: a randomized double-blind clinical trial study. BMC Nephrol, 20, 26.
Article PubMed PubMed Central Google Scholar
Liu, Y. (2004). Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. Journal of the American Society of Nephrology, 15, 1–12.
Article CAS PubMed Google Scholar
Liu, Y., & Yang, J. (2006). Hepatocyte growth factor: new arsenal in the fights against renal fibrosis? Kidney International, 70, 238–240.
Article CAS PubMed Google Scholar
Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation, 119, 1420–1428.
留言 (0)