New derivatives of dipicolinic acid as metallo-β-lactamase NDM-1 inhibitors

Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6:a025247. https://doi.org/10.1101/cshperspect.a025247

Article  PubMed  PubMed Central  Google Scholar 

Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–54. https://doi.org/10.1128/aac.00774-09

Article  CAS  PubMed  PubMed Central  Google Scholar 

King D, Strynadka N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci. 2011;20:1484–91. https://doi.org/10.1002/pro.697

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int. 2014;2014:249856. https://doi.org/10.1155/2014/249856

Article  CAS  PubMed  PubMed Central  Google Scholar 

King DT, Sobhanifar S, Strynadka NC. One ring to rule them all: current trends in combating bacterial resistance to the β-lactams. Protein Sci. 2016;25:787–803. https://doi.org/10.1002/pro.2889

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Li R, Xiao X, Wang Z. Molecules that inhibit bacterial resistance enzymes. Molecules. 2018;24:43. https://doi.org/10.3390/molecules24010043

Article  CAS  PubMed  PubMed Central  Google Scholar 

González LJ, Bahr G, Nakashige TG, Nolan EM, Bonomo RA, Vila AJ. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol. 2016;12:516–22. https://doi.org/10.1038/nchembio.2083

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leiris S, Coelho A, Castandet J, Bayet M, Lozano C, Bougnon J, et al. SAR studies leading to the identification of a novel series of Metallo-β-lactamase inhibitors for the treatment of carbapenem-resistant Enterobacteriaceae infections that display efficacy in an animal infection model. ACS Infect Dis. 2019;5:131–40. https://doi.org/10.1021/acsinfecdis.8b00246

Article  CAS  PubMed  Google Scholar 

Jia Y, Schroeder B, Pfeifer Y, Fröhlich C, Deng L, Arkona C, et al. Kinetics, thermodynamics, and structural effects of quinoline-2-carboxylates, zinc-binding inhibitors of New Delhi Metallo-β-lactamase-1 re-sensitizing multidrug-resistant bacteria for carbapenems. J Med Chem. 2023;66:11761–91. https://doi.org/10.1021/acs.jmedchem.3c00171

Article  CAS  PubMed  Google Scholar 

Brem J, Panduwawala T, Hansen JU, Hewitt J, Liepins E, Donets P, et al. Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors. Nat Chem. 2022;14:15–24. https://doi.org/10.1038/s41557-021-00831-x

Article  CAS  PubMed  Google Scholar 

Chen AY, Thomas PW, Stewart AC, Bergstrom A, Cheng Z, Miller C, et al. Dipicolinic acid derivatives as inhibitors of New Delhi Metallo-β-lactamase-1. J Med Chem. 2017;60:7267–83. https://doi.org/10.1021/acs.jmedchem.7b00407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broadley KJ, Davies RH, Escargueil C, Lee AT, Penson P, Thomas EJ. Synthesis of antagonists of muscarinic (M 3) receptors. Collect Czech Chem Commun 2011;76:781–801. https://doi.org/10.1135/cccc2011017

Article  CAS  Google Scholar 

Johnson KR, de Bettencourt-Dias A. 1O2 Generating luminescent lanthanide complexes with 1,8-naphthalimide-based sensitizers. Inorg Chem. 2019;58:13471–80. https://doi.org/10.1021/acs.inorgchem.9b02431

Article  CAS  PubMed  Google Scholar 

Bebrone C, Moali C, Mahy F, Rival S, Docquier JD, Rossolini GM, et al. CENTA as a chromogenic substrate for studying beta-lactamases. Antimicrob Agents Chemother. 2001;45:1868–71. https://doi.org/10.1128/AAC.45.6.1868-1871.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung L, Rajan KS, Merdinger E, Grecz N. Coordinative binding of divalent cations with ligands related to bacterial spores. Equilibrium studies. Biophys J. 1971;11:469–82. https://doi.org/10.1016/S0006-3495(71)86229-X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Starkova P, Lazareva I, Avdeeva A, Sulian O, Likholetova D, Ageevets V, et al. Emergence of Hybrid Resistance and Virulence Plasmids Harboring New Delhi Metallo-β-Lactamase in Klebsiella pneumonia in Russia. Antibiotics. 2021;10:691. https://doi.org/10.3390/antibiotics10060691

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasheed OK, McDouall JJW, Muryn CA, Raftery J, Vitorica-Yrezabal IJ, Quayle P. The assembly of “S3N”-ligands decorated with an azo-dye as potential sensors for heavy metal ions. Dalton Trans. 2017;46:5229–39. https://doi.org/10.1039/c7dt00569e

Article  CAS  PubMed  Google Scholar 

Chaubet F, Duong MNV, Courtieu J, Gaudemer A, Gref A, Crumbliss AL. Synthèse et études structurales de nouveaux complexes polyhydroxamiques du fer (III) potentiellement utilisables en imagerie par résonance magnétique nucléaire. I: obtention des ligands. Can J Chem 1991;69:1107–16. https://doi.org/10.1139/v91-164

Article  CAS  Google Scholar 

Nakamura T, Mizukami S, Tanaka M, Kikuchi K. Efficient formation of luminescent lanthanide(III) complexes by solid-phase synthesis and on-resin screening. Chem Asian J. 2013;8:2685–90. https://doi.org/10.1002/asia.201300759

Article  CAS  PubMed  Google Scholar 

Nakamura Y, Ohta T, Oe Y. A formal anti-Markovnikov hydroalkoxylation of allylic alcohols with a ruthenium catalyst. Chem Lett 2018;47:288–91. https://doi.org/10.1246/cl.171104

Article  CAS  Google Scholar 

Grigorenko VG, Rubtsova MY, Filatova EV, Andreeva IP, Mistryukova EA, Egorov AM. Cloning and expression of NDM-1 metallo-β-lactamase gene and study of the catalytic properties of the recombinant enzyme. Mosc Univ Chem Bull 2016;71:104–9. https://doi.org/10.3103/S0027131416020048

Article  Google Scholar 

Jarmoskaite I, AlSadhan I, Vaidyanathan PP, Herschlag D. How to measure and evaluate binding affinities. Elife. 2020;9:e57264. https://doi.org/10.7554/eLife.57264

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ewais HA, Taha M, Salm HN. Palladium (II) complexes containing dipicolinic acid (DPA), iminodiacetic acid (IDA), and various biologically important ligands. J Chem Eng Data 2010;55:754–8. https://doi.org/10.1021/je900447n

Article  CAS  Google Scholar 

Tikhomirov AS, Shchekotikhin AE, Lee YH, Chen YA, Yeh CA, Tatarskiy VV, et al. Synthesis and characterization of 4,11-diaminoanthra[2,3-b]furan-5,10-diones: tumor cell apoptosis through tNOX-modulated NAD+/NADH ratio and SIRT1. J Med Chem 2015;58:9522–34. https://doi.org/10.1021/acs.jmedchem.5b00859

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif