Beyond MELD Score: Association of Machine Learning-derived CT Body Composition with 90-Day Mortality Post Transjugular Intrahepatic Portosystemic Shunt Placement

O’Brien A, Williams R. Nutrition in end-stage liver disease: principles and practice. Gastroenterology. 2008;134:1729–40. https://doi.org/10.1053/j.gastro.2008.02.001.

Article  PubMed  Google Scholar 

Lamarti E, Hickson M. The contribution of ascitic fluid to body weight in patients with liver cirrhosis, and its estimation using girth: a cross-sectional observational study. J Hum Nutr Diet. 2020;33:404–13. https://doi.org/10.1111/jhn.12721.

Article  CAS  PubMed  Google Scholar 

Center for disease control and prevention. Body mass index: considerations for practitioners. Cdc [https://stacks.cdc.gov/view/cdc/25368].

Ariya M, Koohpayeh F, Ghaemi A, Osati S, Davoodi SH, Razzaz JM, et al. Assessment of the association between body composition and risk of non-alcoholic fatty liver. PLoS ONE. 2021;16: e0249223. https://doi.org/10.1371/journal.pone.0249223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou WY, Enchakalody BE, Zhang P, Shah N, Saini SD, Wang NC, et al. Automated measurements of body composition in abdominal CT scans using artificial intelligence can predict mortality in patients with cirrhosis. Hepatol Commun. 2021;5:1901–10. https://doi.org/10.1002/hep4.1768.

Article  PubMed  PubMed Central  Google Scholar 

Pickhardt PJ, Graffy PM, Zea R, Lee SJ, Liu J, Sandfort V, et al. Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study. Lancet Digit Health. 2020;2:e192–200. https://doi.org/10.1016/S2589-7500(20)30025-X.

Article  PubMed  PubMed Central  Google Scholar 

Brown JC, Caan BJ, Prado CM, Weltzien E, Xiao J, Cespedes Feliciano EM, et al. Body composition and cardiovascular events in patients with colorectal cancer: a population-based retrospective cohort study. JAMA Oncol. 2019;5:967–72. https://doi.org/10.1001/jamaoncol.2019.0695.

Article  PubMed  PubMed Central  Google Scholar 

Manabe S, Kataoka H, Mochizuki T, Iwadoh K, Ushio Y, Kawachi K, et al. Impact of visceral fat area in patients with chronic kidney disease. Clin Exp Nephrol. 2021;25:608–20. https://doi.org/10.1007/s10157-021-02029-4.

Article  PubMed  Google Scholar 

Toledo DO, Carvalho AM, Oliveira AMRR, Toloi JM, Silva AC, de Mattos F, Farah J, et al. The use of computed tomography images as a prognostic marker in critically ill cancer patients. Clin Nutr ESPEN. 2018;25:114–20. https://doi.org/10.1016/j.clnesp.2018.03.122.

Article  PubMed  Google Scholar 

Vrieling A, Kampman E, Knijnenburg NC, Mulders PF, Sedelaar JPM, Baracos VE, et al. Body composition in relation to clinical outcomes in renal cell cancer: a systematic review and meta-analysis. Eur Urol Focus. 2018;4:420–34. https://doi.org/10.1016/j.euf.2016.11.009.

Article  PubMed  Google Scholar 

Schaffler-Schaden D, Mittermair C, Birsak T, Weiss M, Hell T, Schaffler G, et al. Skeletal muscle index is an independent predictor of early recurrence in non-obese colon cancer patients. Langenbecks Arch Surg. 2020;405:469–77. https://doi.org/10.1007/s00423-020-01901-3.

Article  PubMed  PubMed Central  Google Scholar 

Su H, Ruan J, Chen T, Lin E, Shi L. CT-assessed sarcopenia is a predictive factor for both long-term and short-term outcomes in gastrointestinal oncology patients: a systematic review and meta-analysis. Cancer Imaging. 2019;19:82. https://doi.org/10.1186/s40644-019-0270-0.

Article  PubMed  PubMed Central  Google Scholar 

Pickhardt PJ, Graffy PM, Perez AA, Lubner MG, Elton DC, Summers RM. Opportunistic screening at abdominal CT: use of automated body composition biomarkers for added cardiometabolic value. Radiographics. 2021;41:524–42. https://doi.org/10.1148/rg.2021200056.

Article  PubMed  Google Scholar 

Bunnell KM, Thaweethai T, Buckless C, Shinnick DJ, Torriani M, Foulkes AS, et al. Body composition predictors of outcome in patients with COVID-19. Int J Obes (Lond). 2021;45:2238–43. https://doi.org/10.1038/s41366-021-00907-1.

Article  CAS  PubMed  Google Scholar 

Papaconstantinou D, Vretakakou K, Paspala A, Misiakos EP, Charalampopoulos A, Nastos C, et al. The impact of preoperative sarcopenia on postoperative complications following esophagectomy for esophageal neoplasia: a systematic review and meta-analysis. Dis Esophagus. 2020. https://doi.org/10.1093/dote/doaa002.

Article  PubMed  Google Scholar 

Yao S, Kamo N, Taura K, Miyachi Y, Iwamura S, Hirata M, et al. Muscularity defined by the combination of muscle quantity and quality is closely related to both liver hypertrophy and postoperative outcomes following portal vein embolization in cancer patients. Ann Surg Oncol. 2022;29:301–12. https://doi.org/10.1245/s10434-021-10525-w.

Article  PubMed  Google Scholar 

Best TD, Mercaldo SF, Bryan DS, Marquardt JP, Wrobel MM, Bridge CP, et al. Multilevel body composition analysis on chest computed tomography predicts hospital length of stay and complications after lobectomy for lung cancer: a multicenter study. Ann Surg. 2022;275:e708–15. https://doi.org/10.1097/SLA.0000000000004040.

Article  PubMed  Google Scholar 

Bridge CP, Best TD, Wrobel MM, Marquardt JP, Magudia K, Javidan C, et al. A fully automated deep learning pipeline for multi-vertebral level quantification and characterization of muscle and adipose tissue on chest CT scans. Radiol Artif Intell. 2022;4: e210080. https://doi.org/10.1148/ryai.210080.

Article  PubMed  PubMed Central  Google Scholar 

Nowak S, Faron A, Luetkens JA, Geißler HL, Praktiknjo M, Block W, et al. Fully automated segmentation of connective tissue compartments for CT-based body composition analysis: a deep learning approach. Invest Radiol. 2020;55:357–66. https://doi.org/10.1097/RLI.0000000000000647.

Article  CAS  PubMed  Google Scholar 

Weston AD, Korfiatis P, Kline TL, Philbrick KA, Kostandy P, Sakinis T, et al. Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology. 2019;290:669–79. https://doi.org/10.1148/radiol.2018181432.

Article  PubMed  Google Scholar 

Ha J, Park T, Kim H-K, Shin Y, Ko Y, Kim DW, et al. Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography. Sci Rep. 2021;11:21656. https://doi.org/10.1038/s41598-021-00161-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montgomery A, Ferral H, Vasan R, Postoak DW. MELD score as a predictor of early death in patients undergoing elective transjugular intrahepatic portosystemic shunt (TIPS) procedures. Cardiovasc Radiol. 2005;28:307–12. https://doi.org/10.1007/s00270-004-0145-y.

Article  Google Scholar 

Yin L, Chu S-L, Lv W-F, Zhou C-Z, Liu K-C, Zhu Y-J, et al. Contributory roles of sarcopenia and myosteatosis in development of overt hepatic encephalopathy and mortality after transjugular intrahepatic portosystemic shunt. World J Gastroenterol. 2023;29:2875–87. https://doi.org/10.3748/wjg.v29.i18.2875.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell. 2020;2(2):e200029.

Article  PubMed  PubMed Central  Google Scholar 

Magudia K, Bridge CP, Bay CP, Babic A, Fintelmann FJ, Troschel FM, et al. Population-scale CT-based body composition analysis of a large outpatient population using deep learning to derive age-, sex-, and race-specific reference curves. Radiology. 2021;298:319–29. https://doi.org/10.1148/radiol.2020201640.

Article  PubMed  Google Scholar 

Prado CMM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9:629–35. https://doi.org/10.1016/S1470-2045(08)70153-0.

Article  PubMed  Google Scholar 

DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45. https://doi.org/10.2307/2531595.

Article  CAS  PubMed  Google Scholar 

Jahangiri Y, Pathak P, Tomozawa Y, Li L, Schlansky BL, Farsad K. Muscle gain after transjugular intrahepatic portosystemic shunt creation: time course and prognostic implications for survival in cirrhosis. J Vasc Interv Radiol. 2019;30:866-872.e4. https://doi.org/10.1016/j.jvir.2019.01.005.

Article  PubMed  Google Scholar 

Paris MT. Body composition analysis of computed tomography scans in clinical populations: the role of deep learning. Lifestyle Genom. 2020;13:28–31. https://doi.org/10.1159/000503996.

Article 

留言 (0)

沒有登入
gif