O’Brien A, Williams R. Nutrition in end-stage liver disease: principles and practice. Gastroenterology. 2008;134:1729–40. https://doi.org/10.1053/j.gastro.2008.02.001.
Lamarti E, Hickson M. The contribution of ascitic fluid to body weight in patients with liver cirrhosis, and its estimation using girth: a cross-sectional observational study. J Hum Nutr Diet. 2020;33:404–13. https://doi.org/10.1111/jhn.12721.
Article CAS PubMed Google Scholar
Center for disease control and prevention. Body mass index: considerations for practitioners. Cdc [https://stacks.cdc.gov/view/cdc/25368].
Ariya M, Koohpayeh F, Ghaemi A, Osati S, Davoodi SH, Razzaz JM, et al. Assessment of the association between body composition and risk of non-alcoholic fatty liver. PLoS ONE. 2021;16: e0249223. https://doi.org/10.1371/journal.pone.0249223.
Article CAS PubMed PubMed Central Google Scholar
Zou WY, Enchakalody BE, Zhang P, Shah N, Saini SD, Wang NC, et al. Automated measurements of body composition in abdominal CT scans using artificial intelligence can predict mortality in patients with cirrhosis. Hepatol Commun. 2021;5:1901–10. https://doi.org/10.1002/hep4.1768.
Article PubMed PubMed Central Google Scholar
Pickhardt PJ, Graffy PM, Zea R, Lee SJ, Liu J, Sandfort V, et al. Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study. Lancet Digit Health. 2020;2:e192–200. https://doi.org/10.1016/S2589-7500(20)30025-X.
Article PubMed PubMed Central Google Scholar
Brown JC, Caan BJ, Prado CM, Weltzien E, Xiao J, Cespedes Feliciano EM, et al. Body composition and cardiovascular events in patients with colorectal cancer: a population-based retrospective cohort study. JAMA Oncol. 2019;5:967–72. https://doi.org/10.1001/jamaoncol.2019.0695.
Article PubMed PubMed Central Google Scholar
Manabe S, Kataoka H, Mochizuki T, Iwadoh K, Ushio Y, Kawachi K, et al. Impact of visceral fat area in patients with chronic kidney disease. Clin Exp Nephrol. 2021;25:608–20. https://doi.org/10.1007/s10157-021-02029-4.
Toledo DO, Carvalho AM, Oliveira AMRR, Toloi JM, Silva AC, de Mattos F, Farah J, et al. The use of computed tomography images as a prognostic marker in critically ill cancer patients. Clin Nutr ESPEN. 2018;25:114–20. https://doi.org/10.1016/j.clnesp.2018.03.122.
Vrieling A, Kampman E, Knijnenburg NC, Mulders PF, Sedelaar JPM, Baracos VE, et al. Body composition in relation to clinical outcomes in renal cell cancer: a systematic review and meta-analysis. Eur Urol Focus. 2018;4:420–34. https://doi.org/10.1016/j.euf.2016.11.009.
Schaffler-Schaden D, Mittermair C, Birsak T, Weiss M, Hell T, Schaffler G, et al. Skeletal muscle index is an independent predictor of early recurrence in non-obese colon cancer patients. Langenbecks Arch Surg. 2020;405:469–77. https://doi.org/10.1007/s00423-020-01901-3.
Article PubMed PubMed Central Google Scholar
Su H, Ruan J, Chen T, Lin E, Shi L. CT-assessed sarcopenia is a predictive factor for both long-term and short-term outcomes in gastrointestinal oncology patients: a systematic review and meta-analysis. Cancer Imaging. 2019;19:82. https://doi.org/10.1186/s40644-019-0270-0.
Article PubMed PubMed Central Google Scholar
Pickhardt PJ, Graffy PM, Perez AA, Lubner MG, Elton DC, Summers RM. Opportunistic screening at abdominal CT: use of automated body composition biomarkers for added cardiometabolic value. Radiographics. 2021;41:524–42. https://doi.org/10.1148/rg.2021200056.
Bunnell KM, Thaweethai T, Buckless C, Shinnick DJ, Torriani M, Foulkes AS, et al. Body composition predictors of outcome in patients with COVID-19. Int J Obes (Lond). 2021;45:2238–43. https://doi.org/10.1038/s41366-021-00907-1.
Article CAS PubMed Google Scholar
Papaconstantinou D, Vretakakou K, Paspala A, Misiakos EP, Charalampopoulos A, Nastos C, et al. The impact of preoperative sarcopenia on postoperative complications following esophagectomy for esophageal neoplasia: a systematic review and meta-analysis. Dis Esophagus. 2020. https://doi.org/10.1093/dote/doaa002.
Yao S, Kamo N, Taura K, Miyachi Y, Iwamura S, Hirata M, et al. Muscularity defined by the combination of muscle quantity and quality is closely related to both liver hypertrophy and postoperative outcomes following portal vein embolization in cancer patients. Ann Surg Oncol. 2022;29:301–12. https://doi.org/10.1245/s10434-021-10525-w.
Best TD, Mercaldo SF, Bryan DS, Marquardt JP, Wrobel MM, Bridge CP, et al. Multilevel body composition analysis on chest computed tomography predicts hospital length of stay and complications after lobectomy for lung cancer: a multicenter study. Ann Surg. 2022;275:e708–15. https://doi.org/10.1097/SLA.0000000000004040.
Bridge CP, Best TD, Wrobel MM, Marquardt JP, Magudia K, Javidan C, et al. A fully automated deep learning pipeline for multi-vertebral level quantification and characterization of muscle and adipose tissue on chest CT scans. Radiol Artif Intell. 2022;4: e210080. https://doi.org/10.1148/ryai.210080.
Article PubMed PubMed Central Google Scholar
Nowak S, Faron A, Luetkens JA, Geißler HL, Praktiknjo M, Block W, et al. Fully automated segmentation of connective tissue compartments for CT-based body composition analysis: a deep learning approach. Invest Radiol. 2020;55:357–66. https://doi.org/10.1097/RLI.0000000000000647.
Article CAS PubMed Google Scholar
Weston AD, Korfiatis P, Kline TL, Philbrick KA, Kostandy P, Sakinis T, et al. Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology. 2019;290:669–79. https://doi.org/10.1148/radiol.2018181432.
Ha J, Park T, Kim H-K, Shin Y, Ko Y, Kim DW, et al. Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography. Sci Rep. 2021;11:21656. https://doi.org/10.1038/s41598-021-00161-5.
Article CAS PubMed PubMed Central Google Scholar
Montgomery A, Ferral H, Vasan R, Postoak DW. MELD score as a predictor of early death in patients undergoing elective transjugular intrahepatic portosystemic shunt (TIPS) procedures. Cardiovasc Radiol. 2005;28:307–12. https://doi.org/10.1007/s00270-004-0145-y.
Yin L, Chu S-L, Lv W-F, Zhou C-Z, Liu K-C, Zhu Y-J, et al. Contributory roles of sarcopenia and myosteatosis in development of overt hepatic encephalopathy and mortality after transjugular intrahepatic portosystemic shunt. World J Gastroenterol. 2023;29:2875–87. https://doi.org/10.3748/wjg.v29.i18.2875.
Article CAS PubMed PubMed Central Google Scholar
Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell. 2020;2(2):e200029.
Article PubMed PubMed Central Google Scholar
Magudia K, Bridge CP, Bay CP, Babic A, Fintelmann FJ, Troschel FM, et al. Population-scale CT-based body composition analysis of a large outpatient population using deep learning to derive age-, sex-, and race-specific reference curves. Radiology. 2021;298:319–29. https://doi.org/10.1148/radiol.2020201640.
Prado CMM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9:629–35. https://doi.org/10.1016/S1470-2045(08)70153-0.
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45. https://doi.org/10.2307/2531595.
Article CAS PubMed Google Scholar
Jahangiri Y, Pathak P, Tomozawa Y, Li L, Schlansky BL, Farsad K. Muscle gain after transjugular intrahepatic portosystemic shunt creation: time course and prognostic implications for survival in cirrhosis. J Vasc Interv Radiol. 2019;30:866-872.e4. https://doi.org/10.1016/j.jvir.2019.01.005.
Paris MT. Body composition analysis of computed tomography scans in clinical populations: the role of deep learning. Lifestyle Genom. 2020;13:28–31. https://doi.org/10.1159/000503996.
留言 (0)